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Abstract 

Many organizations demand that current water resource issues necessitate improved stream 
network mapping for more accurate and reliable watershed analysis and modeling results, which can 
ultimately enable better management and policy decisions. Stream network data from the National 
Hydrography Dataset Plus (NHDPlus) and derived from Light Detection and Ranging (LIDAR) are 
each widely accepted to be of superior quality compared to many other conventional datasets. Each 
dataset indicates potential to improve a wide range of water resource applications; NHDPlus for its 
high spatial accuracy and functionality, and LIDAR-derived networks for their high resolutions. 
NHDPlus is publicly available and widely used; yet, until recently, high production costs and limited 
availability of LIDAR data have traditionally limited their widespread use in stream network 
mapping for water resource applications. However, recently increasing availability and decreasing 
costs suggest that LIDAR-derived networks could potentially be used to improve many application 
initiatives.  

 
This study analyzes spatial discrepancies between NHDPlus and LIDAR-derived stream 

network datasets. Results from analyses are intended to contribute information that can lead to 
improved stream network mapping and water resource applications. Mann-Whitney U and 
Wilcoxon-Signed Rank tests were first conducted to ascertain statistically significant types of spatial 
discrepancies existing between the datasets. Spatial autocorrelation analysis was then used to 
quantify spatial patterns of discrepancies between NHDPlus and LIDAR-derived networks. Next, 
Kruskal-Wallis tests were conducted to determine associations between local patterns of 
discrepancies and various landscape characteristics. Lastly, Spearman Rank Correlation tests were 
used to ascertain relationships between landscape characteristics and discrepancies between 
networks per catchment. 
 

Results indicate that significant types and patterns of spatial discrepancies exist between 
NHDPlus and LIDAR-derived stream network datasets, and local patterns of the discrepancies are 
spatially related to various landscape characteristics. These findings imply how spatial discrepancies 
resulting between NHDPlus and LIDAR-derived networks may lead to differing watershed analysis 
and modeling results. Collectively, this research contributes building fundamental information for 
better understanding how to improve stream network mapping and water resource applications.  
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Chapter 1 Introduction 

1.1 Problem Statement 

The primary objective of this research is to analyze spatial discrepancies between NHDPlus 
and LIDAR-derived stream network datasets. This fundamental step in data collection and 
extrapolation is a cornerstone for improved watershed management and policy decisions. Two types 
of high quality stream network datasets, LIDAR-derived and NHDPlus networks, are compared in 
this study to take a step toward better understanding their spatial discrepancies and associated 
implications for water resource initiatives. 

Progress has been made in water resource management and planning. However, ongoing 
efforts to improve watershed analyses and modeling are critical for sustainable management and 
optimization of a wide range of ecosystem services delivered to humans and the environment. 
Examples of these initiatives include the provision of clean drinking water, flood control, drought 
mitigation, and the protection of aquatic and terrestrial biodiversity. 

 Successful watershed analysis and modeling requires stream network datasets to comprise 
spatial representations that sufficiently account for natural flow paths draining earth’s surface and 
reflect the morphologic characteristics of networks as they occur in nature. Insufficient spatial 
depictions of stream networks could bring about incorrect and ambiguous analysis results, 
producing false implications, which can potentially lead to poor water resource management and 
policy decisions. In particular, there has been much recent interest by various organizations in 
improving the spatial accuracy and classification of upstream waters. Producing adequate spatial 
representations of headwaters, especially ephemeral streams, is a recurring challenge in stream 
network mapping.  

Improvements to water resource applications necessitate continued research efforts toward 
better understanding how different data or resolutions used in stream network mapping will lead to 
different analysis results. A growing body of work provides evidence of how landscape 
characteristics such as slope, vegetation density, aspect, impervious surfaces, soils, geology, and 
stream channel morphology have been empirically linked to spatial differences between stream 
network datasets generated at different spatial scales, and/or produced from different sources, 
methods, and measurement schemes (e.g. Gyasi-Agyei et al. 1995; Barber and Shortridge, 2005; 
James et al. 2007; Li and Wong, 2009; Zhao et al. 2009). However, current literature warrants a more 
comprehensive and in-depth empirical understanding of relationships between landscape 
characteristics and spatial discrepancies among stream network datasets. Studies indicate that spatial 
discrepancies exist between LIDAR-derived and NHDPlus networks because of the different ways 
in which they are generated. 

Stream network data from the National Hydrography Dataset Plus (NHDPlus) and derived 
from Light Detection and Ranging (LIDAR) have demonstrable potential to improve stream 
network mapping and therefore impact a broad range of water resource initiatives. Advantages of 
using NHDPlus data are the following:  publicly available, commonly used, have continuous spatial 
coverage of the United States, and superior spatial accuracies compared to many other high quality 
conventional datasets. Advantages of using LIDAR technologies to construct stream networks are 
the following:  efficient delineation methods and finely spaced point cloud data to extrapolate high-
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resolution terrain relief.  The merits of NHDPlus and LIDAR datasets are well documented. These 
data sources supply a superior spatial detail and accuracy (e.g. James et al. 2007; Zhao et al. 2008; 
and Li and Wong, 2010) when compared to other data sources.  

Although LIDAR-derived stream network datasets have been used in various important 
water resource initiatives and their potential capabilities have been well-recognized in literature, 
LIDAR-derived networks have yet to become standard datasets in watershed analysis and modeling 
due to concern about high production costs and limited availability. However, recently decreasing 
production costs and increasing availability of high-resolution LIDAR data show increasing potential 
to improve various water resource applications. 

In this thesis, metrics adopted or customized from applied hydrology and geostatistics are 
used to derive reach and catchment-level variables to elucidate spatial discrepancies between 
LIDAR-derived and NHDPlus stream network datasets and to analyze relationships between 
landscape characteristics and the spatial discrepancies. The analyses are conducted on three 
comparable scale watersheds of differing physiographies to highlight how spatial discrepancies 
between the datasets vary between watersheds with highly different landscape characteristic patterns. 
The watersheds selected for analyses include the North Carolina portion of the French Broad 
Watershed, the Rocky Watershed in North Carolina, and the Pamlico Watershed in North Carolina. 
The French Broad study area falls within the Blue Ridge Physiographic Province which comprises a 
mostly rugged mountainous and highly forested landscape. In contrast, Rocky Watershed contains 
gently rolling hills and land use strongly dominated by agriculture. The Pamlico Watershed falls 
within the Coastal Plain physiographic region, which is extremely flat and largely intersected by vast 
wetlands. 

Analyses conducted in this thesis compare spatial differences between LIDAR-derived and 
NHDPlus stream network datasets. ArcGIS 10 geoprocessing tools and functionalities (ESRI, 2010) 
are used to assemble, process, and visualize data and analysis results. Also, Microsoft Excel, SPSS 
20, and GeoDa software are used to facilitate in data management, and processing. 

Results presented in this study contribute building an understanding of spatial discrepancies 
between LIDAR-derived and NHDPlus stream network datasets. The methods employed here are 
fundamental in refining end users’ knowledge and highlighting the limitations or advantages of each.  
Discerning similarities and differences between the two datasets will help researchers and users to 
best select appropriate data for analysis that is appropriate for the location and scale of modeling, 
thereby yielding a greater impact on water resource applications.  

1.2 Research Questions and Hypotheses 

The main objective of this thesis is to analyze the spatial discrepancies between NHDPlus 
and LIDAR-derived stream networks datasets. To accomplish this goal, research methods were 
designed and implemented to address the following research questions: 

1. What types of spatial discrepancies exist between NHDPlus stream networks and networks 
derived from LIDAR data?  
 

2. What are the spatial patterns of discrepancies between LIDAR-derived and NHDPlus networks?  
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3. How are landscape characteristics related to the spatial discrepancies between NHDPlus and 
LIDAR-derived stream network datasets?   

 

My hypotheses include: 

1. Significant discrepancies in stream reach lengths exist between NHDPlus and LIDAR-
derived stream networks. 
 

2. High resolution of LIDAR-derived DEMs allows for LIDAR-derived stream networks to 
contain greater spatial detail than NHDPlus networks.  
 

3. Spatial patterns of discrepancies significantly differ among watersheds of comparable scales 
but differing physiographies. 

4. There are associations between spatial patterns of discrepancies and landscape 
characteristics. 
 

5. Strong correlations exist between spatial discrepancy values and catchment area, canopy 
coverage, and slope.  
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Chapter 2 Literature Review 

2.1 A Watershed Approach to Water Resource Initiatives 

A watershed is a topographically delineated area encompassing a stream system that drains 
into a common channel or outlet (USEPA, 2012b). Watersheds and sub-watershed drainage areas 
can be depicted at various spatial scales in which upland features ranging from small ridges to large 
topographic divides naturally define their boundaries. Stream networks within watersheds initiate 
near drainage divides as small tributaries or headwaters that accumulate water, which flows 
downstream under the influence of gravity. Some portions of stream networks may only contain a 
few trickles of water whereas other parts may be over a kilometer wide. Stream systems are 
composed of a system of reaches, which are often defined as segments of streams containing mostly 
homogenous characteristics (Moore et al., 2002). A variety of geographic data are collected, mapped, 
and stored at the reach level because it allows for a logical and functional watershed management 
framework (Horn and Hanson, 1994; Berry, 1999).  

Successful watershed management allows for the optimization of ecosystem services to 
humans and the environment, such as flood and drought mitigation, recreational activities, clean 
drinking water, and the conservation of aquatic and terrestrial habitats (Browner, 1996; NAS, 2009 
and NRC, 1997). A number of initiatives have formerly been established for improving watershed 
management in the United States. Although several policies have been effective at identifying and 
reducing point source pollutants, many have failed to successfully manage nonpoint sources from 
agriculture, construction, or urbanization, and other complex spatial problems (Browner, 1996). 
Consequently, in 1991, the US Environmental Protection Agency (USEPA) adopted a watershed 
approach to environmental management, requiring a strong geographic focus for designing and 
implementing water resource initiatives (Browner, 1996; NRC, 1997).  

Although incorporating watersheds into an analytical management framework was not a 
novel endeavor by the time USEPA adopted this approach, many prior initiatives had been 
unsuccessful due to factors such as limited funding, inadequate datasets and technology, and gaps in 
scientific knowledge of quantitative methods for detailed analyses and modeling (Berry, 1999). 
However, significant advancements in Geographic Information Systems (GIS) technology within the 
past few decades and increasingly available high-quality surface model, hydrology feature, and 
attribute data have allowed for more complex and detailed spatial analyses for increasing scientific 
knowledge of watershed problems and enhancing capabilities for optimizing management and policy 
decisions (Berry, 1999 and USEPA, 2009). Examples of water resource problems that GIS has been 
used to address include discerning optimal locations and vegetation types for designing riparian 
buffers, quantifying impacts of land use change on water quality, simulating flood scenarios, and 
analyzing costs and benefits of different environmental management strategies (Berry, 1999).  

The holistic framework of USEPA’s approach has allowed for the integration of data from 
various collaborators through harnessing the development of numerous geographic datasets and 
models as useful tools for managing, analyzing, and modeling large amounts of spatial data, thereby 
leading to more comprehensive and effective strategies for addressing a wide range of watershed 
problems at multiple geographic scales. The USEPA watershed approach is still in place today and 
has led to higher management and policy standards and widespread impacts on water resource 
initiatives of multiple organizations.  
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2.2 Stream Network Datasets and Watershed-based Decisions 

Stream network datasets have become essential components of today’s watershed-based 
management and decision making. Within recent decades, increasing availability and functionality of 
GIS software and data and the integration of GIS and hydrologic modeling systems have facilitated 
stream network dataset capabilities to extend from description to prediction and to optimization for 
multi-domain water resource initiatives (Berry, 1999). Today’s conventional stream network data 
models used in watershed analysis and modeling have largely evolved under the broad 
interdisciplinary umbrella of geomorphometry, which integrates concepts and applications from 
mathematics, earth science, engineering, and computer science (Pike, 2009). 

Geomorphometry can be described as “the morphometry of landforms with or without 
digital data” (Pike et al., 2009), which collectively involves the use of established metrics for 
quantitatively characterizing and understanding the physical landscape at various spatial scales. 
Quantitative evaluation of drainage areas and the advent of GIS technologies have collectively 
allowed for the development of several types of geographic datasets used today for a wide range of 
applications, such as cost-benefit analyses of watershed management approaches, climate modeling, 
water quality monitoring and hydrologic simulations, precision agriculture, urban planning, 
education, and human-environmental vulnerability and risk analyses (Browner, 1996; NRC, 1997; 
Pike et al., 2009).  

2.3 Characterizing Drainage Network Morphology 

Since the classification of stream network features in geographic datasets provides a 
foundation for watershed analysis, it is important for features to be appropriately classified to 
provide appropriate spatial representations of surface drainage paths as they occur in nature. A large 
body of work has contributed to the quantitative classification of drainage networks for improving 
stream network datasets and their use in various applications. Much impetus for the development of 
quantitative methods for characterizing networks was initially spurred through Horton’s (1945) 
synthesis of methods for characterizing drainage morphology and erosional processes. Significant 
work followed in building a quantitative basis for drainage network analysis. 

Contributions from Strahler (1952) and Shreve (1966) in the hierarchical classification of 
streams led to significant developments in the characterizations of drainage networks leading to 
considerable progress in watershed analysis. Notable early developments were also spurred from 
findings of Morisawa (1962) in which she suggests that quantitative methods for characterizing 
watershed morphologies may potentially be useful for practical purposes. Since then, a large body of 
work has reconfirmed Morisawa’s findings and their significance for addressing various water 
resource issues (e.g. Ogunkoya et al., 1983; Pitlick, 1994; Ifabiyi, 2004; Jimoh-Iroye, 2010). 

This growing body of work underscores the general importance of producing spatially 
complete and accurate stream network datasets and has influenced the development of widespread 
water resource applications used today. Effective water resource applications require stream network 
datasets comprising networks that are spatially characteristic of surface drainage paths occurring in 
nature. Typically, the fundamental accounting unit of conventional stream network datasets is the 
reach feature. Appropriately classifying reach features is important as they provide a framework for 
indicating changes in the physical and chemical compositions of streams (Horn and Hanson, 1994; 
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Moore et al., 2002; Alexander et al., 2007).  In nature, interactions between earth’s land, water, and 
climate systems cause the physical and chemical compositions of streams to be continuously altered. 
As a result, sufficiently characterizing stream network datasets both spatially and temporally has 
traditionally been a challenge. 

2.3.1 Stream Morphology Metrics and Hydrologic Implications 

Drainage density (D) has been extensively used as a metric for watershed analyses. D was 
defined by Horton (1945) as the average length of streams per unit area, and describes “the linear 
scale of landforms in fluvially eroded landscapes” (Abrahams and Ponczynski, 1984). D can be both 
directly and indirectly statistically related to water quantity and quality parameters (Bloschl, 2008; 
Merz and Bloschl, 2008; Pallard et al., 2009). Generally, direct effects refer to explicit relationships 
between D and water quantity (e.g. peak flood magnitude, mean runoff) and quality (e.g. suspended 
sediment yield, nitrogen load) indicators, and indirect effects consider implicit connections between 
D and water quantity and quality variables modulated by land (e.g. geology, soil, land use) and 
climate (e.g. precipitation, temperature, humidity) factors (Bloschl, 2008; Merz and Bloschl, 2008; 
Pallard et al., 2009). 

D has been quantitatively shown to reflect climate and topography in a number of different 
ways. Abrahams and Ponczynski (1984) showed how precipitation (PM) and precipitation intensity 
(PI) can either be positively or inversely related to D, and either allow for an increase or decrease in 
surface runoff.  They concluded that PM and PI control D by either increasing vegetation growth and 
soil depth, leading to higher soil infiltration rates and ground resistance to erosion, thus lower 
densities and decreased runoff intensity; or increasing D by increasing soil impacts and erosion rates 
(channel incision) leading to greater runoff intensity. D is typically higher in arid locations with 
sparse vegetation and directly increases with higher PM and PI (Abrahams and Ponczynski, 1984; 
Brookfield, 1966; Gregory, 1977; Woodyer, 1968). D has also been linked to geologic characteristics 
of watersheds. For example, reduced D may be attributed to increased rocky slopes, impervious 
surfaces, karst landscapes or highly weathered bedrock (Pallard et al., 2008) 

Studies show that high D is associated with increased water quantity estimates. Authors have 
suggested that higher D implies streams are closer together thus overland travel time is lower for 
water to reach streams (Gregory and Walling, 1973; Ogunkoya et al., 1984; and Preston et al., 1998), 
allowing for less probability of surface runoff being lost to evapotranspiration (Ogunkoya et al., 
1984). Consequently, increased runoff leads to increased in-stream flow volumes, which flow at 
higher velocities within networks and lead to higher peak flow magnitudes (Pallard et al., 2008). 

D is often regarded as one of the most important drainage network characteristics used for 
quantifying drainage network morphologies and indicating watershed processes. However, sufficient 
evaluations of networks necessitate analyzing more factors than just D alone. Stream length (L) is 
also important for watershed analyses and modeling. Particularly, L implies in-stream flow times. 
Given L, the average cross-sectional area of a stream, a coefficient to correct for different flow 
velocities of the surface and bed of the stream, and the time for a float to travel from one point of a 
stream to another; in-stream flows can be calculated (USEPA, 2012a).  Further, increased runoff leads 
to increased in-stream flow volumes, which flow at higher velocities within networks and lead to 
higher peak flow magnitudes (Pallard et al., 2008). 
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 Analyzing stream frequency (F) can also lead to important information that can be useful 
toward improving water quantity and quality related applications. Horton (1945) defines stream 
frequency as the number of streams per unit area. F patterns signify connectivity of streams 
throughout drainage networks, which implies changes in the physical and chemical conditions of 
water (Dodds and Rothman, 2000; Alexander et al. 2007). In addition, as inferred from Horton’s 
(1945) law of stream numbers, F is relevant to the numbers of stream reaches from one stream 
order to the next or the ‘bifurcation ratio,’ indicating that F is linked to patterns of drainage densities.  

2.4 NHDPlus Stream Networks 

NHDPlus is an integrated collection of geospatial data that extend capabilities and 
functionality of the NHD dataset. NHDPlus is comprised of various key features from the NHD, 
National Elevation Dataset (NED), National Watershed Boundary Dataset (WBD), as well as other 
attributes (USEPA and USGS, 2010). Its hydrographic model framework includes continuous 
coverage of the United States and stream networks are based off of NHD flowlines, which are a set 
of spatially referenced linear features linking to form a system of reaches and routes (USEPA and 
USGS, 2010).  

An NHDPlus reach is a spatially defined, addressable unit which can be a stream, waterbody, 
or coastline feature.  Chains of reaches in NHDPlus are indexed along spatially referenced routes 
and addressed proportionally from 0 to one 100 along each route. Discrete locations and events 
have been linked to reach features in NHDPlus for improved navigation and application-ready 
analysis and modeling (McKay, 2008).  

The NHDPlus data also contains drainage area features ranging from the catchment-level to 
regional scale. Hydrologic features contain unique IDs that allow for complex data integration for a 
wide range of analysis and modeling at various spatial scales. In addition, NHDPlus includes datasets 
such as NHD hydro-enforced flow direction and accumulation grids, and stream flow volume and 
velocity estimates (USEPA and USGS, 2010). Public availability and robust application-ready 
functionalities of NHDPlus facilitate its widespread use toward various watershed initiatives. 

 Although applications of NHDPlus stream network data have shown to be highly effective, 
further research is required to better understand how NHDPlus differs from stream network 
datasets derived from surface elevation data such as digital elevation models (DEM) or networks 
derived from light detection and ranging data (LIDAR), and how relative discrepancies may affect 
implications of various hydrologic analysis and modeling applications A comparison between 
NHDPlus and LIDAR-derived datasets may potentially allow for a clearer understanding of how the 
delineation of stream network datasets may differ spatially due to different data sources, 
measurement scales, collection techniques, and processing methods. In particular, an analysis of the 
relationships between landscape characteristics and spatial discrepancies between the datasets may 
contribute useful insights for certain types of commonly used publicly available stream network 
datasets and their corresponding impacts on applications. 

Certain aspects of NHDPlus stream network processing methods imply spatial patterns of 
discrepancies that may exist between NHDPlus and networks extracted using automated techniques. 
In particular, streams of NHDPlus networks are generated from multiple editors digitizing streams 
from various topographic map sources, comprising inconsistent spatial scales (McKay, 2008; USGS, 
1998). The nature of this approach leads to challenges in accurately depicting and consistently 



www.manaraa.com

8 
 

characterizing networks; especially for a large national-scale dataset. Local accuracy and precision of 
certain features of networks may likely be less consistent throughout NHDPlus data. An example 
may be of streams that are too small to be accounted for at the map scales at which they were 
digitized. This may be reflected by large spatial inconsistencies of stream initiation points. In 
addition, local patterns of reduced data quality may reflect spatial patterns of landscape 
characteristics due to local patterns of reduced spatial accuracy in the topographic maps from which 
NHDPlus networks are digitized. For example, the topographic maps may locally contain limited 
spatial accuracy and completeness in densely vegetated areas due to limitations of technology used 
for generating the maps.  

It is clear that NHDPlus stream network data provides several advantages for benefiting a 
wide range of water resource applications. However, LIDAR-derived networks contain several 
advantages as well and an improved understanding of spatial differences between the two datasets is 
warranted. 

2.5 DEM-derived Stream Networks 

Studies comparing different types of stream network datasets derived from terrain surface 
elevation data indicate potential opportunities for improving the spatial completeness and accuracy 
of stream network datasets. Several types of terrain surface elevation data exist and have been used 
to extract stream network datasets. Among the most commonly used forms of surface elevation data 
are digital elevation models (DEM). DEM-derived stream networks are extensively used in 
hydrology applications. Various automated extraction methods have been developed and used for 
delineating stream networks from DEM data, and several factors have been empirically shown to 
influence the quality of extracted networks, such as production methods, DEM resolution, and 
landscape characteristics (e.g. Gyasi-Agyei et al. 1995; Thompson, 2001; Barber and Shortridge, 
2005; James et al. 2007; Li and Wong, 2009; Zhao et al. 2009).  

In terms of data production methods, effects of stream network extraction algorithms are 
commonly linked to errors and uncertainties in DEM-derived stream networks. Li and Wong (2009) 
suggest that effects of stream network extraction algorithms on the quality of DEM-derived 
networks can be related to variations in topography. Several studies have shown that slope is a key 
topographic characteristic related to DEM accuracy. Typically, the spatial accuracy of DEM-derived 
slope models tend to improve with higher resolution DEMs (Li and Wong, 2010). In addition, 
decreased quality of DEM-derived stream networks has been linked to aspect. For example, aspect 
has been shown to positively relate to error residuals where shadows occur in DEMs (e.g. from 
surrounding features such as mountains, trees, buildings, etc.) (Papasaika and Baltsavias, 2009). 
Examples of other factors leading to reduced DEM-derived stream network quality include rough 
terrain surfaces, densely vegetated areas, and impervious surfaces (Papasaika and Baltsavias, 2009).  

Global and local accuracy measures of DEM-derived stream network datasets have displayed 
marked improvements with higher resolution DEMs. In particular, stream networks generated from 
high-resolution LIDAR data have demonstrated considerably high spatial accuracies compared to 
networks derived from lower-resolution DEMs and other data sources. However, further research is 
warranted to better understand the overall benefits and caveats of LIDAR data for stream network 
mapping and hydrologic applications compared to other types of stream network datasets. 
Specifically, previous contributions suggest the need for a more in-depth understanding of 
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connections between landscape characteristics and spatial discrepancies between stream network 
datasets. This knowledge is particularly relevant considering the decreasing costs, increasing public 
availability, and demonstrated potential of LIDAR data (Li and Wong, 2009).  

2.6 LIDAR-derived Stream Networks 

Most conventional DEM sources such as NED or the Shuttle Radar Topography Mission 
(SRTM) dataset are generated from passive remote sensing technologies, which capture information 
through aerial photogrammetric technologies that measure naturally occurring energy reflected from 
the earth’s surface, typically from the sun (NOAA, 2009; NASA, 2011; USGS, 2011). In contrast, 
LIDAR is a type of active remote sensing technology that uses a Global Positioning System (GPS), 
Inertial Navigation System (INS), and lasers to develop high-resolution topographic data of large 
areas (James at al., 2007; Terrapoint, 2008). LIDAR data are collected through emitting an array of 
laser pulses from an aircraft or ground unit in which the time between the emission of pulses 
emitted and receipt of return signals from reflected energy is converted to distance through a 
ranging unit (James et al., 2007). Return signals correspond successively to the locations of surfaces 
that they contact. For example, LIDAR-derived surface elevation models generated from first return 
signals commonly capture surfaces of tree canopies or spatial footprints of building tops, whereas 
the earth’s ground surface would be generated from last returns. The raw data consists of dense 
point clouds in which individual points correspond to the precise geographic coordinates of 
reflected surfaces. Processing of last return signals to generate terrain surface models entails applying 
interpolation techniques for producing continuous surface representations of data, and additional 
computational methods are applied for removing vegetation and artifacts (e.g. extraneous features 
such as buildings, bridges, or culverts).  

Studies show that LIDAR technology is capable of improving mapping of stream networks 
depending on the distribution and density of laser pulses emitted and processing methods used for 
deriving the networks. Results from James et al. (2007) show that LIDAR is the best available 
technology for mapping highly accurate depictions of gully and headwater networks in densely 
forested locations, except where streams are relatively narrow or parallel and closely spaced. 
Similarly, Zhao et al. (2010) compared 1 and 10 m LIDAR-derived DEMs, and a conventional 10 m 
DEM derived from aerial photogrammetry, and found that the 1 m resolution DEMs derived from 
LIDAR performed substantially better at mapping flow diversion terrace failures.   

Conversely, LIDAR technologies emitting moderate laser scans over densely forested areas 
can produce significantly poor quality data and occasionally even large data gaps as a result of sparse 
point cloud spacing of the terrain surface. Problems can also arise from overly dense point cloud 
spacing. If data are not carefully processed to remove artifacts, LIDAR-derived DEMs can produce 
greatly distorted landscape features and lead to incorrect results of various applications. Other 
known caveats of LIDAR can occur from many geoprocessing algorithms that have not yet been 
extended to handle datasets containing resolutions as high as LIDAR-derived DEMs. These types of 
problems have commonly been shown to occur with stream network extraction algorithms (Garcia, 
2004). Examples of some resulting issues include abundances of sinks in LIDAR-derived DEMs and 
artificial channels delineated in areas containing braided streams, wide channels, and various types of 
anthropogenic features.  
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Chapter 3 Study Areas  

The study areas (Figure 2.1) are based on three HUC 8 watersheds in North Carolina that 
each fall within a different physiographic region (e.g. in terms of geology, relief, and soils) (USGS, 
2003; Physiographic Influences, 2011). Resulting network morphologies vary with respect to 
physiographic characteristics of the landscapes in which they are contained.  From west to east, 
study sites are in the Upper French Broad Watershed (HUC 06010105) within the Blue Ridge 
Physiographic Province, the Rocky Watershed (HUC 03040105) within the Piedmont Province, and 
the Pamlico Watershed (HUC 03020104) within the Coastal Plain Province. From west to east, the 
terrain of North Carolina ranges from rugged mountains, to gently rolling hills of the Piedmont, to 
step-like terraces backing up to low-lying terrain and wetlands that eventually converge with the 
Atlantic Ocean. As local relief ranges gradually decreases eastward with changing geologies and soil 
types, terrain surface roughness decreases, drainage networks become less dense, and streams 
become more sinuous and braided. Network morphologies are also reflective of human land use 
patterns influencing surface water drainage. Generally, climates across North Carolina are temperate 
and become increasingly humid eastward towards the coast. Precipitation patterns and terrain 
surface characteristics have influenced the relative frequency and impact of precipitation influencing 
the fluvial dissection of the study areas. One of the primary factors contributing to precipitation and 
temperature variability within and between study areas is altitude (SCONC, 2011).  

 

Figure 2.1. Study Areas: Upper French Broad, Rocky, and Pamlico Watersheds  
 
The Upper French Broad watershed study area (UFB) is located in the easternmost 

physiographic province of North Carolina and generally encompasses a rugged mountainous 
landscape with streams draining through remnants of highlands and emptying downslope into the 
French Broad River. The French Broad River originates in Transylvania County, North Carolina; 
then flows northeast through Henderson, diverting northwest through Buncombe, and Madison 
counties in North Carolina; continuing through the Great Smoky Mountain National Park in 
Tennessee and converging with the Holston River in Knoxville, Tennessee forming the Tennessee 
River. This research excludes the Tennessee portion of UFB watershed Tennessee lacks sufficient 
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available data for analyses (USEPA and USGS, 2010). Land cover within the UFB study area ranges 
from vast wilderness of the Pisgah National Forest, to sparsely-populated agricultural and 
manufacturing communities, such as the city of Brevard in Transylvania County; to more developed 
land such as the city of Ashville (Columbia Gazetteer of the World Online s.v. “Brevard.” Accessed 
from: http://www.columbiagazetteer.org/main/ViewPlace/19162  October 2011). 
  

The Rocky watershed study area (ROC) is located in south-central North Carolina within the 
older non-mountainous portion of the Appalachians, which is largely underlain by crystalline rock 
and consists mainly of gently rolling hills dissected by channels forming steep valleys (Physiographic 
Influences, 2011).  The watershed drains into the Rocky River, which originates in Iredell County, 
and descends southeastward for approximately 145 km, passing through Kannapolis and Concord 
and converging with the Yadkin River to form the Pee Dee River (Columbia Gazetteer of the World 
Online s.v. “Rocky River.” Accessed from: October 2011). The area is sparsely populated and 
consists mainly of forest and agricultural land. Urbanized areas are primarily only concentrated in the 
Liberty area, around Siler City, and scattered along major transportation routes (TLC, 2011). 

 
The Pamlico study area (PAM) lies along the central coast of North Carolina, predominantly in 

Beaufort County. The watershed area comprises very flat low-relief terrain consisting primarily of 

row-crop agriculture and forests interspersed by vast wetlands. Various portions of the watershed 

also include artificially implanted drainage features such as irrigation ditches and canals. Most of the 

developed land exists near Washington (NC DWQ, 2010). The watershed drains into the Pamlico 

River, which extends from the town of Washington to Roos Point (NC DWQ, 2010). The Pamlico 

River widens eastward into an expansive estuary system emptying into Pamlico Sound to the east. 

The Tar River flows into the Pamlico River from the West and several arms converge with the 

Pamlico River eastward from the north and south, one of the largest being the Pungo River. 

(Columbia Gazetteer of the World Online “Pamlico River.” Accessed from: 

http://www.columbiagazeteer.org/main/ViewPlace/119557 October 2011). 

 

 

 

 

 

 

 

http://www.columbiagazetteer.org.proxy.lib.utk.edu:90/main/ViewPlace/19162


www.manaraa.com

12 
 

Chapter 4 Data and Methods 

4.1 Data Processing 

Reach and catchment-levels datasets were prepared to analyze spatial discrepancies between 
LIDAR-derived and NHDPlus networks for the study areas. Geoprocessing methods in ArcGIS 10 
software (ESRI, 2010) were used to generate stream networks from LIDAR for the study areas using 
1/9 arc second resolution NED data. Resulting LIDAR-derived and NHDPlus stream network 
datasets contained spatially referenced systems of reaches for each of the study areas and individual 
lengths of reaches were calculated in meters. Reach and catchment-level variables were derived to 
analyze spatial patterns of discrepancies between the datasets and their relationships with landscape 
characteristics for watersheds of comparable scales and differing physiographies.  

4.2 Determining Study Areas 

Study areas were largely determined based on the availability of data. Dense raw point cloud 
LIDAR data (unprocessed) are publicly available for most of North Carolina; yet, it was concluded 
that the higher amount of detail that may potentially be achieved through deriving stream networks 
from unprocessed LIDAR would likely not outweigh the required time and effort to extract 
reasonably accurate datasets for analyses. Alternatively, networks were derived from pre-processed 
LIDAR data available in the form of high-resolution DEMs. The DEMs are 1/9 arc second 
resolution data from the National Elevation Dataset (NED). This resolution of NED data is 
primarily generated from LIDAR, which is likely why they are commonly referred to in literature as 
one of the highest resolution publicly available DEM datasets. Publicly available 1/9 arc second 
NED data are not yet widely available in the US. Therefore, study areas were selected from North 
Carolina because the available data were most suitable for this research.  

Three HUC 8 drainage areas were selected from within different physiographic provinces in 
North Carolina. The UFB drainage area contains land in Tennessee and North Carolina, but only 
the North Carolina portion was used for analyses because data were not available for the Tennessee 
portion. Once HUC 8 watershed areas were selected, their boundaries were then corrected to 
spatially align with NHDPlus catchment shapefiles.  

4.3 Automated Stream Network Extraction Process 

The general work flow process for delineating stream networks from the NED data is displayed 
in Figure 4.11. Stream networks were extracted from the 1/9 arc second NED rasters for each study 
area using ArcGIS 10 geoprocessing tools. The NED datasets were obtained from the US 
Geological Survey (USGS) Seamless Viewer in the form of individual tiles (USGS, 2011) and were 
spatially referenced to the geographic coordinate system North American Datum 1983.  NED tiles 
first had to be mosaicked for each study area and then converted to USA Contiguous Albers Equal 
Area Conic projection, which was applied to all geographic data used in the project. Output data 
were then clipped to the boundaries of the study areas.  

                                                           
1 Flow accumulation thresholds were determined and applied individually for each watershed.  
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First, to extract stream networks from rendered NED datasets, the ‘fill’ tool was used to fill all 
sinks in the elevation rasters for each study area. A ‘sink’ is a DEM cell containing a lower value than 
each of its eight surrounding cells. Sinks must be filled so that extracted networks contain 
continuous flow paths. The ArcGIS hydrology tools used to extract networks are designed to 
generate continuous flow paths; therefore requiring sinks to be filled before extracting networks. 
After sinks are filled, the resulting ‘depressionless’ elevation datasets were used to derive flow 
direction rasters. The ‘flow direction’ geoprocessing tool which is commonly referred to as an eight 
direction flow model (or D-8 model) was used to derive flow direction.  

The ‘flow accumulation tool’ was then applied to the flow direction outputs to derive flow 
accumulation rasters for each study area. In automated stream network extraction processes applied 
to DEMs, flow accumulation can be conceptualized as a spatially defined wetness index in which 
each equally sized cell within a raster dataset contains a value representing the count of upstream 
cells contributing flow based on their flow directions (e.g. Jenson, 1991). Generally, a user-defined 
threshold value is applied to this index to highlight all cells above a certain flow accumulation value 
in order to delineate continuous flow paths comprising a drainage network (e.g. Jenson, 1991).  

Flow accumulation thresholds were discerned for each study area by first resampling the data to 
lower resolutions that approximately correspond to ground accuracies at the scale of maps used to 
digitize NHDPlus networks. The stream network extraction model (See Figure 4.1) was then iterated 
through a list of flow accumulation thresholds until the resulting networks comprised minimal 
differences in overall drainage density to NHDPlus. Determined thresholds were then adjusted to be 
proportionately applied to the 1/9 arc second DEMs.  

The ‘stream link’ tool was next applied to conditional threshold outputs to spatially index links 
and junctions comprising each network. Then, the ‘stream to feature’ tool was used to convert 
streams to vector in order to derive variables for analyses. Lastly, Google Earth was used to rapidly 
verify coverage of the delineated networks.  

4.4 Identifying Reach-Level Spatial Discrepancies 

Procedures used for generating reach and catchment-level variables were carried out using 
ArcGIS 10 software. LIDAR-derived and NHDPlus networks used in this study were each 
composed of linear spatially referenced reach features calculated in meters. Mann-Whitney U tests 
were conducted to ascertain whether LIDAR-derived and NHDPlus networks are significantly 
different within each study area. Results of the Mann-Whitney U tests are based on the Mann-
Whitney U statistic, which is used to test the null hypothesis that the median reach lengths of 
LIDAR-derived and NHDPlus networks are not statistically different. Nonparametric tests were 
chosen for reach and catchment-level analyses because Kolmogorov–Smirnov test results showed 
that variables were not normally distributed. 

Stream order is an important metric for quantifying morphological characteristics of drainage 
networks and relating them to the flow, transport, and the fate of water and constituents draining 
earth’s surface. However, due to slight inconsistencies in stream order calculation methods between 
LIDAR-derived and NHDPlus datasets, further analyses were not carried out in terms of stream 
order. Although the Strahler method was used to calculate stream order for each type of dataset, an 
additional algorithm was applied to handle orders of braided and divergent NHDPlus reach features.  
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Figure 4.1. Work Flow for Generating LIDAR-derived Stream Networks  
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As a result, many of the NHDPlus reaches were designated an order of 0, which was not included in 
the stream order calculations for the LIDAR-derived networks.  

4.5 Identifying Catchment-Level Spatial Discrepancies 

Spatial discrepancies between LIDAR-derived and NHDPlus networks were analyzed at the 
catchment-level based on their relative differences in total stream lengths per catchment (L), 
drainage densities per catchment (D), reach frequencies per catchment (F), and mean reach lengths 

per catchment ( ̅). Summary statistics of these metrics are displayed in Tables A.2, A.3, and A.4. 
Nonparametric Wilcoxon-Signed Rank tests were conducted to discern whether LIDAR-derived and 
NHDPlus networks were significantly different in terms of each of the above measurements per 
catchment. The Wilcoxon-Signed Rank test is based on the median difference in paired data 
(Critchon, 2003). Results of the tests indicate significant differences in local magnitudes of 

discrepancies between LIDAR-derived and NHDPlus networks for calculated L, D, F, and  ̅ values 
per catchment. 

‘Spatial discrepancy variables’ were then calculated to further explore spatial differences 
between the networks and relate them to landscape characteristics. The spatial discrepancy variables 
represent differences per catchment between stream network datasets in terms of the four previous 
metrics. The derived catchment-level variables include difference values of total stream lengths per 
catchment (∆L), drainage densities per catchment (∆D), reach frequencies per catchment (∆F), and 

mean reach lengths per catchment (∆ ̅). The calculation of spatial discrepancy variables for each 
watershed can be conceptualized as follows: 

∆Li   = LIDAR Li – NHDPlus Li 
∆Di   = LIDAR Di – NHDPlus Di 

∆Fi   = LIDAR Fi – NHDPlus Fi 

∆ ̅i   = LIDAR ∆ ̅i – NHDPlus ∆ ̅i 

In which: 

 Catchment i = 1, 2, 3…n  

Positive values of the spatial discrepancy variables indicate catchments in which LIDAR-
derived networks are greater for a given measurement (e.g. total length, drainage density, reach 
frequency, or mean reach length per catchment), and negative values indicate catchments in which 
NHDPlus networks are greater for a given measurement.  

4.6 Spatial Autocorrelation Analysis 

Spatial autocorrelation analysis is a useful method for evaluating patterns of phenomena over 
space. In this study, spatial autocorrelation analysis is used to indicate spatial patterns, magnitudes, 
and types of discrepancies existing between LIDAR-derived and NHDPlus stream networks within 
drainage areas of differing physiographies. Global and local-scale spatial autocorrelation analyses 

were used in this study to explore spatial patterns of ∆L, ∆D, ∆F, and ∆ ̅ between NHDPlus and 
LIDAR-derived stream networks for the study areas.  Spatial autocorrelation is based on the 
Moran’s I statistic, which is measured on a scale of -1 to 1 and shows whether variables are spatially 
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random, clustered, or dispersed. A Moran’s I value of 1 indicates clustering while a Moran’s I value 
of -1 indicates dispersion.  

 
Global spatial autocorrelation shows the overall spatial pattern of a given set of features 

within an area based on values of an associated attribute. Local indicators of spatial autocorrelation 
(LISA) indicate where statistically significant local patterns exist. The univariate LISA test calculates 
where significant local high-high, low-low, low-high, and high-low spatial patterns exist based on a 
spatial weights matrix (Anselin et al., 2003 and Anselin, 2004). Global and local spatial 
autocorrelation analyses were conducted using a first-order queen contiguity matrix, which takes into 
account common boundaries and vertices of polygons to define neighbors. Separate matrices were 
constructed for each of the spatial discrepancy variables according to their corresponding attribute 
values per catchment.  

 
High-high and low-low patterns indicate local clustering, whereas low-high and high-low 

patterns show locally dispersed patterns. For example, high-high cluster patterns based on ∆D 
would indicate where clusters of catchments containing significantly higher LIDAR-derived drainage 
densities than NHDPlus densities exist; whereas a low-high dispersed pattern would show where 
catchments with significantly higher NHDPlus densities than LIDAR-derived densities are 
surrounded by catchments containing higher LIDAR-derived densities than NHDPlus densities. 
GeoDa software was used to define spatial matrices, compute univariate Moran’s I statistics, and 
conduct univariate LISA tests. Locally significant patterns were exported to shapefiles and displayed 
in thematic maps in ArcMap. 

4.7 Relating Spatial Discrepancy Patterns to Landscape Characteristics 

Kruskal-Wallis tests were used to indicate associations between spatial patterns of 
discrepancies and landscape characteristics. The landscape characteristic variables used in this 
analysis include ‘catchment area’ (hectares), mean ‘slope’ (degrees) per catchment, percent tree 
‘canopy coverage’ per catchment, and variables representing proportions per catchment of four 
different types of land cover: ‘developed land,’ ‘forest,’ ‘agriculture,’ and ‘water.’  

USGS Seamless Viewer (USGS, 2010) was used to download datasets for deriving the slope 
and canopy coverage variables. Slope rasters were generated from 1/9 arc second resolution NED 
data using the ‘slope’ geoprocessing tool. The 2001 Percent Tree Canopy dataset from the National 
Land Cover Database (NLCD) was used to generate a canopy coverage variable for each study area. 
NLCD Percent Tree Canopy data consist of 30 meter resolution rasters containing percentages of 
canopy coverage per cell (Homer et al., 2004). The ‘zonal statistics’ tool was used on the slope and 
tree canopy rasters to calculate mean canopy coverage per catchment and mean slope per catchment.  

Land cover variables were based on NHDPlus attribute data, which contained percentages 
of land cover types per catchment derived from the 1992 NLCD (Anderson Level II classification 
scheme). Relevant NLCD categories were aggregated into the above-mentioned land cover types. 
The reclassification of NLCD categories is displayed below in Table 4.12.  
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Table 4.1. Classification of Land Cover Variables 
 

NLCD 1992 
Class Code 

Definition New Variable 

21 Low Intensity Residential  

Developed 
22 High Intensity Residential  

23 Commercial/Industrial/Transportation  

33 Transitional  

31 Bare Rock/Sand/Clay  - 

32 Quarries/Strip Mines/Gravel Pits  - 

41 Deciduous Forest  

Forest 42 Evergreen Forest  

43 Mixed Forest  

81 Pasture/Hay  
Agriculture 

82 Row Crops  

85 Urban/Recreational Grasses  - 

11 Open Water  

Water 91 Woody Wetlands  

92 Emergent Herbaceous Wetlands 

 

4.8 Spearman Rank Correlation Analysis  

Nonparametric correlation analysis was used to test for significant relationships between 
landscape characteristics and spatial discrepancies between LIDAR-derived and NHDPlus networks 
for each study area. SPSS software was used to compute the correlations between the spatial 

discrepancy variables (e.g. ∆L, ∆D, ∆F, and ∆ ̅) and landscape characteristic variables (as described 
in Section 4.6). Correlations between catchment areas and landscape characteristics are shown in 
Table A.6 (Appendix) as a reference for discerning possible influences of catchment areas on 
analysis results. Correlation analysis results are based on the Spearman’s rho coefficient, which 
indicates the strength and direction of relationships between each pair of variables. The landscape 
characteristic variables also include a variable indicating median ‘aspect’ values per catchment. 

The aspect variable indicates the approximate direction in which slopes are facing within 
each catchment. In ArcGIS 10, the ‘aspect’ geoprocessing algorithm was applied to projected 1/9 
arc second resolution NED datasets, yielding output rasters with cell values containing directions 
ranging from 0 to 360 degrees. Values were then recoded and formatted so that correlation results 
used be interpreted correctly. The ‘reclassify’ tool was used in ArcMap to recode cell values into 
cardinal and intermediate directions, yielding new values ranging from 1 to 8. The ‘zonal statistics’ 
tool was used to compute median aspect directions per catchment. Data were then imported to 
SPSS and recoded into eight dummy variables. These variables contain a value of 1 if the given 
aspect is true for a catchment and a value of 0 when the given aspect is false for a catchment.  
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Furthermore, positive correlations indicate that as values of a given landscape characteristic 
variable increase, values of a given spatial discrepancy variable increase. Negative correlations 
indicate that as values of one variable increase, values of the other variable decrease. For example, a 
negative correlation between canopy coverage and ∆D would indicate that locally, as canopy 
coverage per catchment increases, NHDPlus drainage densities become larger than LIDAR-derived 
drainage densities. On the other hand, a positive correlation between canopy coverage and ∆D 
would locally show that as canopy coverage increases, LIDAR-derived drainage densities become 
larger than NHDPlus drainage densities.  
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Chapter 5 Results 

5.1 Identifying Reach-Level Spatial Discrepancies 

Maps of the networks are displayed in Figures 5.1, 5.2, and 5.3. As shown below in Table 
5.1, Mann-Whitney U results indicate that significant differences in reach lengths exist between 
LIDAR-derived and NHDPlus networks in each of the study areas. Summary statistics (Table A.5 in 
Appendix) and graphs of network reach length distributions (Figure 5.4) support these results. 

Table 5.1. Mann-Whitney U Tests of Reach Length Discrepancies Between LIDAR-derived 
and NHDPlus Stream Network Datasets 

 

Test UFB ROC PAM 

Mann-Whitney U 3,198,127.00 1,519,775.00 1,382,214.00 

Wilcoxon W 9,661,937.00 9,295,371.00 2,917,842.00 

Z -16.32 -20.35 -2.12 

( p-value) 0.00 0.00 0.03 

 
Note: Reach lengths are in meters. 

 

In the Upper French Broad watershed (UFB), the overall spatial composition of LIDAR-
derived and NHDPlus networks appear fairly similar, as networks considerably overlap throughout 
the watershed (Figure 5.1). However, consistently appearing discrepancies between networks are 
noticeable. According to Figure 5.1, the LIDAR-derived network appears to contain a greater 
amount of detail than the NHDPlus network in terms of reach frequency, but the lengths of 
overlapping reaches appear to be consistently shorter in the LIDAR-derived network. The 
distributions of reaches lengths (Table 5.4) and summary statistics (Table A.1 in Appendix) support 
these observations. 

In the Rocky watershed (ROC), stream networks also generally overlap (Figure 5.2). The 
reach discrepancies look similar to those described of UFB but the differences appear less randomly 
distributed in ROC study area. In ROC, the LIDAR-derived network contains more than twice as 
many reaches as NHDPlus and the mean reach length is also approximately twice that of NHDPlus. 
In addition, the topography and land cover appear more variable in ROC compared to UFB, which 
may be an indication of the slightly different spatial patterns of discrepancies between the 
watersheds. According to Figure 5.2, mean reach length discrepancies seem to differ between upper 
and lower parts of the watershed.  

Although LIDAR-derived and NHDPlus networks contain highly similar total numbers of 
reaches and mean reach lengths in Pamlico watershed (PAM) compared to UFB and ROC study 
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areas, as shown in Figure 5.3, there are clearly substantial differences between the networks 
throughout PAM. Additional algorithms and techniques commonly need to be used to handle very 
wide streams or large open waters, divergent streams, and anthropogenic streams such as ditches 
and canals; all of which are contained within significant portions of PAM study area. Yet, addressing 
many of these issues is beyond the scope of this study. 

 

Figure 5.1. LIDAR-derived and NHDPlus Stream Network Datasets:  
Upper French Broad Study Area 

 
Note: Boxes indicate zoomed perspectives of spatial discrepancies between datasets. Imagery source: Bing 

Maps Aerial.  Microsoft Corporation and its data suppliers. 2012. Accessed April, 2012 from: 
http://www.arcgis.com/home/webmap/viewer.html?webmap=677cd0c509d842a98360c46186a2768e  
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Figure 5.2. LIDAR-derived and NHDPlus Stream Network Datasets: Rocky 

Study Area 
 

Note: Boxes indicate zoomed perspectives of spatial discrepancies between datasets. Imagery source: Bing 
Maps Aerial.  Microsoft Corporation and its data suppliers. 2012. Accessed April, 2012 from: 

http://www.arcgis.com/home/webmap/viewer.html?webmap=677cd0c509d842a98360c46186a2768e  
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Figure 5.3. LIDAR-derived and NHDPlus Stream Network Datasets: Pamlico 
Study Area 

 
Note: Boxes indicate zoomed perspectives of spatial discrepancies between datasets. Imagery source: Bing 

Maps Aerial.  Microsoft Corporation and its data suppliers. 2012. Accessed April, 2012 from: 
http://www.arcgis.com/home/webmap/viewer.html?webmap=677cd0c509d842a98360c46186a2768e  

 

 

 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 
                        Upper French Broad Study Area 

 

 
Rocky Study Area 

 

 

Figure 5.4. Reach Lengths of LIDAR-derived and NHDPlus Stream Networks 

Note: Circles represent outliers; stars represent extremes. 
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Pamlico Study Area 

 
Figure 5.4. Continued. 

 
Note: Circles represent outliers; stars represent extremes. 

 

5.2. Identifying Catchment-Level Spatial Discrepancies 

Thematic maps of catchment-level spatial discrepancies between NHDPlus and LIDAR-
derived networks are displayed in Figures 5.5, 5.6, 5.7, and 5.8 and summary statistics of each 
network are shown in Tables A.2, A.3, and A.4. (Appendix) Wilcoxon-Signed Rank test results show 
that there are statistically significant spatial discrepancies between LIDAR-derived and NHDPlus 
stream networks at the catchment-level within each study area (Table 5.2). The networks are shown 
to significantly differ in terms of total stream length per catchment, reach frequency per catchment, 
and mean stream length per catchment in each of the study areas. LIDAR-derived and NHDPlus 
networks are also statistically different in terms of drainage density per catchment in UFB and ROC 
watersheds but not in PAM watershed. 

 

As explained in Section 4.5, the spatial discrepancy variables (∆L, ∆D, ∆F, and ∆ ̅) are the 
calculated values of spatial differences between LIDAR-derived and NHDPlus networks per 
catchment. Summary statistics of the spatial discrepancy variables are displayed in Table A.5 
(Appendix). Relative magnitudes of discrepancies can be conceptualized by examining the values in 
relation to the dashed lines at 0 in Figures 5.9, 5.10, 5.11, and 5.12 and by referring to minimum and 
maximum values in the summary statistics tables (See Table A.5 in Appendix).  
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In general, interquartile ranges of all spatial discrepancy variables contain both positive and 
negative values close to 0, and are fairly small compared to upper and lower quartile ranges of the 
distributions. This infers that overall roughly 50% of catchments contain fairly low differences 
between networks within each of the study areas. Positive median values of spatial discrepancy 
variables indicate that a study area contains a higher proportion of catchments containing larger 
LIDAR-derived values than NHDPlus values for a given spatial discrepancy variable. Negative 
median values indicate that a given study area contains a higher proportion of catchments containing 
greater NHDPlus values than LIDAR-derived values for a given variable. 

 
 

Table 5.2. Wilcoxon-Signed Rank Tests of Catchment-Level Spatial Discrepancies Between 
LIDAR-derived and NHDPlus Stream Network Datasets 

 

Metric 
  Upper French Broad    Rocky   Pamlico 

 
Z (p-value) 

 
Z (p-value) 

 
Z (p-value) 

L 
 

-2.569 .010 
 

-13.089 .000 
 

-5.174 .000 

D 
 

-3.324 .001 
 

-4.157 .000 
 

-0.111 .912 

F 
 

-14.804 .000 
 

-16.622 .000 
 

-4.556 .000 

 ̅   -22.902 .000   -19.043 .000   -4.996 .000 

 

Note: Total stream length per catchment (L) measurement units are in m; drainage density per catchment (D) 
measurement units are in m/ha2; reach frequency per catchment (F) measures N reaches per catchment; 

mean reach length per catchment ( ̅) measurement units are in m. Significant results are boldfaced. 

 

5.2.1 Total Stream Length per Catchment 

Distributions of ∆L can be visualized in Figures 5.5 and 5.9. Peak magnitudes of ∆L are 
much larger in PAM than UFB or ROC sites. In comparison, peak magnitudes of ∆L are less in 
ROC than PAM and lowest in UFB. The largest magnitudes between networks within each drainage 
area occur in catchments where the total lengths of LIDAR-derived streams per catchment are 
greater than the total lengths of NHDPlus streams per catchment. Each study area contains a greater 
proportion of catchments with longer LIDAR-derived total stream lengths than NHDPlus lengths, 
respectively. However, this proportional difference is more subtle in UFB. 

5.2.2 Drainage Density per Catchment 

The spatial distribution of ∆D is illustrated in Figure 5.6. Figure 5.10 and Table A.5 
(Appendix) show that the ranges of ∆D are similar between UFB and PAM study areas but the 
range of ∆D in ROC is considerably less in comparison. As shown by the minimum and maximum 
values of ∆D in Table A.5 (Appendix), peak magnitudes of ∆D occur in catchments where drainage 
densities of NHDPlus networks are higher per catchment compared to densities per catchment of 
LIDAR-derived networks. However, in each study area, there are proportionately more of 
catchments in which LIDAR-derived networks contain higher drainage densities than NHDPlus 
networks do (Figure 5.10 and Table A.5 in Appendix).  
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5.2.3 Reach Frequency per Catchment 

Distributions of ∆F are graphed in Figure 5.11 and can be visualized spatially in Figure 5.7. 
Peak magnitudes of ∆F occur in catchments where NHDPlus reach frequencies are greater than 
LIDAR-derived reach frequencies. Peak magnitudes of ∆F are noticeably higher in PAM than UFB 
and ROC. In PAM, there is a greater proportion of catchments containing higher NHDPlus reach 
frequencies than LIDAR-derived frequencies; in ROC, there is a greater proportion of catchments 
with higher LIDAR-derived reach frequencies than NHDPlus frequencies; and in UFB, there are 
approximately equal proportions of network-dominated reach frequencies per catchment.  

5.2.4 Mean Reach Length per Catchment 

Distributions of ∆ ̅ can be seen in Figures 5.8 and 5.12. Peak magnitudes of ∆ ̅ are greater 
in catchments with higher NHDPlus mean reach lengths than LIDAR-derived mean reach lengths 

per catchment. This is indicated in the box plots of ∆ ̅ distributions in Figure 5.12 and shown by 

minimum and maximum ∆ ̅ values in Table A.5 (Appendix). In each study area, there are a greater 
proportion of catchments in which NHDPlus mean reach lengths are longer than LIDAR-derived 
mean reach lengths. There is a considerably larger range of negative mean reach length discrepancies 
in ROC than UFB or PAM study areas. 
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Figure 5.5. Total Stream Length per Catchment Discrepancies between LIDAR -derived and NHDPlus Stream 
Network Datasets 

 
Note: Values are displayed using septile cut points in ArcMap 10. 
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Figure 5.6. Drainage Density per Catchment Discrepancies between LIDAR -derived and NHDPlus Stream 
Network Datasets 

 
Note: Values are displayed using septile cut points in ArcMap 10. 
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Figure 5.7. Reach Frequency per Catchment Discrepancies between LIDAR -derived and NHDPlus Stream 
Network Datasets 

 
Note: Values are displayed using septile cut points in ArcMap 10. 
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Figure 5.8. Mean Reach Length per Catchment Discrepancies between LIDAR -derived and NHDPlus Stream 
 Network Datasets 

 
Note: Values are displayed using septile cut points in ArcMap 10. 
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Figure 5.9. Discrepancies in Total Stream Length Per Catchment Between 
LIDAR-derived and NHDPlus Datasets: Upper French Broad, Rocky, and 

Pamlico Drainage Areas 
 
Note: Values represent the magnitude of differences in total stream length per catchment between LIDAR-
derived and NHDPlus networks for each study area. Discrepancy values can be conceptualized as follows:  
 

(Total LIDAR-derived stream length per catchment) – (Total NHDPlus stream length per catchment) 
 

Values above the dashed line indicate where total LIDAR-derived stream length per catchment > total 
NHDPlus stream length per catchment. Values below the dashed line denote where total NHDPlus stream 
length per catchment > total LIDAR-derived frequency per catchment. Circles represent outliers; stars 
represent extremes. 

 
 
 
 

 

 

 

 

 
 



www.manaraa.com

32 
 

 
Figure 5.10. Discrepancies in Drainage Density Per Catchment Between LIDAR -

derived and NHDPlus Datasets: Upper French Broad, Rocky, and Pamlico 
Drainage Areas 

 
Note: Values represent the magnitude of differences in drainage density per catchment between LIDAR-
derived and NHDPlus networks for each study area. Discrepancy values can be conceptualized as follows:  
 

(LIDAR-derived drainage density per catchment) – (NHDPlus drainage density per catchment) 
 

Values above the dashed line indicate where total LIDAR-derived drainage density per catchment > total 
NHDPlus drainage density per catchment. Values below the dashed line denote where total NHDPlus 
drainage density per catchment > total LIDAR-derived drainage density per catchment. Circles represent 
outliers; stars represent extremes. 
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Figure 5.11. Discrepancies in Reach Frequency Per Catchment Between LIDAR -

derived and NHDPlus Datasets: Upper French Broad, Rocky, and Pamlico 
Drainage Areas 

 
Note: Values represent the magnitude of differences in reach frequency per catchment between LIDAR-
derived and NHDPlus networks for each study area. Discrepancy values can be conceptualized as follows:  
 

(LIDAR-derived reach frequency per catchment) – (NHDPlus reach frequency per catchment) 
 

Values above the dashed line indicate where total LIDAR-derived reach frequency per catchment > total 
NHDPlus frequency per catchment. Values below the dashed line denote where total NHDPlus reach 
frequency per catchment > total LIDAR-derived frequency per catchment. Circles represent outliers; stars 
represent extremes. 
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Figure 5.12. Discrepancies in Mean Reach Length Per Catchment Between 
LIDAR-derived and NHDPlus Datasets: Upper French Broad, Rocky, and 

Pamlico Drainage Areas 
 
Note: Values represent the magnitude of differences in mean reach length per catchment between LIDAR-
derived and NHDPlus networks for each study area. Discrepancy values can be conceptualized as follows:  
 

(LIDAR-derived mean reach length per catchment) – (NHDPlus mean reach length per catchment) 
 

Values above the dashed line indicate where total LIDAR-derived stream length per catchment > total 
NHDPlus length per catchment. Values below the dashed line denote where total NHDPlus stream length 
per catchment > total LIDAR-derived length per catchment. Circles represent outliers; stars represent 
extremes. 

 
 

5.3 Spatial Autocorrelation Analysis 

5.3.1 Upper French Broad Watershed 

Spatial autocorrelation analysis results for UFB can be seen in Figure 5.13. In general, spatial 
discrepancies are randomly distributed in UFB study area. Moran’s I values indicate very slight 

overall clustering patterns of ∆L, ∆F, and ∆ ̅ values. A negative Moran’s I value indicates an 
overarching dispersed spatial pattern of ∆D but in general, ∆D are the most randomly distributed of 
all the spatial discrepancy variables. Locally, spatial patterns of ∆L and ∆F appear to be very similar. 

The distribution of ∆ ̅ patterns appear similar distributed to that of ∆L and ∆F patterns, but with 
opposite cluster and dispersed patterns. 
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5.3.2 Rocky Watershed 

Spatial autocorrelation analysis results for ROC study area are displayed in Figure 5.14. 
Spatial patterns and corresponding Moran’s I values show that significant local patterns are much 
more prevalent throughout ROC in comparison to UFB; yet, dominant spatial patterns of individual 
metrics appear similar between the two study areas. Like UFB study area, significant local ∆L and 

∆F are similarly distributed and ∆ ̅ patterns appear similarly distributed to ∆L and ∆F patterns but 
with opposite cluster and dispersed patterns. Like UFB study area, ∆D are also the most randomly 
distributed of all the spatial discrepancy variables in ROC. 

 
Although ∆D cluster and dispersed patterns are not substantially prevalent within ROC, the 

watershed scale pattern is slightly more clustered than dispersed (Moran’s I = 0.017) and contains 
predominantly high-high clusters. Further, a large proportion of the high-high ∆D clusters appear to 
agglomerate heavily along the main channel within ROC.  

5.3.3 Pamlico Watershed 

As indicated in Figure 5.15 by the positive Moran’s I values and relative proportions and 
distributions of spatial patterns, clustering patterns are generally more prominent to varying degrees 
than dispersed patterns for each type of spatial discrepancy within PAM study area. In contrast to 
UFB and ROC study areas, ∆L and ∆F patterns do not appear markedly similar to each other. High-
high ∆L clusters tend to be comprised of relatively large catchments, which are primarily 
agglomerated across the northern part of the watershed. Respectively, low-low ∆L clusters are 
mainly located within a few scattered groups of relatively small catchments. Proportions and 
distributions of ∆F pattern types highly vary within PAM; a prominent arrangement of high-high ∆F 
values coalesce in a sinuous fashion from the northeastern to the western middle portion of the 
watershed. At the watershed scale, Moran’s I values indicate that overall clustering of ∆L and ∆F are 
generally stronger overall in ROC and PAM than in UFB study area. 

 

The Moran’s I value indicates that ∆ ̅ values are randomly distributed overall. Similar to 
UFB and PAM, there are relatively few statistically significant local ∆D patterns; ∆D values are 
primarily randomly distributed throughout the watershed as indicated by the Moran’s I value (0.071). 
Significant local ∆D patterns are mainly of high-high clusters.  
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Figure 5.13. Spatial Autocorrelation Analysis of Spatial Discrepancies between 

LIDAR-derived and NHDPlus Stream Networks in Upper French Broad 
Drainage Area 
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Figure 5.14. Spatial Autocorrelation Analysis of Spatial Discrepancies between 
LIDAR-derived and NHDPlus Stream Networks in Rocky Drainage Area  
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Figure 5.15. Spatial Autocorrelation Analysis of Spatial Discrepancies between 
LIDAR-derived and NHDPlus Stream Networks in Pamlico Drainage Area  
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5.4 Spatial Discrepancy Patterns and Landscape Characteristics 

Results of Kruskal-Wallis tests are shown in Tables 5.3, 5.4, 5.5 and 5.6 and distributions of 
landscape characteristic variables are displayed in Figures 5.16 through 5.222. Results show that 
several individual landscape characteristics significantly differ between spatial discrepancy pattern 
groups within the study areas. Median values indicate relative differences of landscape variables 
between groups within and between study areas. Many analyses contain groups with unequal sample 
sizes, which may potentially influence results of some significance tests. Taking into account the 
differences in sample sizes and median values of significant results, some overarching associations 
can be discerned.   

5.4.1 Total Stream Length Discrepancy Patterns  

Kruskal-Wallis test results in terms of ∆L patterns are shown in Table 5.3. Results indicate 
that larger catchments generally tend toward clusters containing longer total lengths of LIDAR-
derived streams than NHDPlus streams in each of the study areas (high-high group). 

 
 In UFB, lower percentages of canopy coverage are more associated with longer total lengths 

of LIDAR-derived streams than NHDPlus streams (high-high group) whereas higher percentages of 
canopy coverage are more associated with longer total lengths of NHDPlus streams than LIDAR-
derived streams (low-low group). In ROC, percentages of canopy coverage in the “low-low” group 
are significantly lower than the other groups.  There are significant differences in mean slope 
between groups as well for each study area. 

 
In PAM study area, there is a significantly greater proportion of forest land per catchment in 

the low-low group than the other groups. There are also significant differences in proportions of 
agricultural land and water between groups in UFB and PAM. In UFB, considerably greater 
proportions of water per catchment tend toward the high-high group compared to the other groups. 
In ROC, substantially greater proportions of water per catchment tend toward the high-high group 
compared to other groups, especially the low-low group. Significant differences in proportions of 
water per catchment also exist in PAM study area. 

5.4.2 Drainage Density Discrepancy Patterns 

 Results of Kruskal-Wallis tests in terms of ∆D patterns are displayed in Table 5.4. 

Associations between ∆D patterns and catchment areas are similar within each of the study areas, in 
which clusters of catchments containing higher LIDAR-derived drainage densities compared to 
NHDPlus densities (high-high group) are generally within larger catchments compared to the other 
groups. In UFB and ROC, proportions of canopy coverage tend to be significantly higher in the 
high-high than low-low cluster groups. Slope also significantly differs between groups in ROC and 
PAM. In PAM, results show that steeper slopes are more associated with high-high ∆D clusters than 
other local patterns.  
 

                                                           
2 Aspect is not a variable included in the Kruskal Wallis tests. Relationships between aspect and spatial discrepancies 
between the NHDPlus and LIDAR-derived networks are discussed in the Spearman Rank Correlation analysis results 
(Section 5.5).  
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 Regarding land cover variables, all of the developed land is within high-low catchments in 
ROC study area. There are also significant differences in proportions of forest land and water 
between certain groups in ROC and PAM. Significant differences in proportions of agricultural land 
also exist between groups within UFB and PAM. 

5.4.3 Reach Frequency Discrepancy Patterns  

 Kruskal-Wallis analysis findings regarding ∆F patterns are shown in Table 5.5. 
Catchment areas generally tend to be significantly larger in high-high clusters than the other groups 
for ROC and PAM study areas. There are also significant differences in percentages of canopy 
coverage between groups for UFB and PAM study areas. 
 

In terms of land cover, proportions of forest land in PAM study area are significantly higher 
within high-high clusters, especially compared to low-low clusters. Significant differences also exist 
between groups with agricultural land and water in ROC and agricultural land in UFB. 

5.4.4 Mean Reach Length Discrepancy Patterns  

 Results of Kruskal-Wallis tests in terms of ∆ ̅ patterns are presented in Table 5.6. 
Catchment areas tend to be considerably smaller within high-high clusters than catchment areas 
within low-low clusters in ROC and PAM. There are also significant differences between 
percentages of canopy coverage between groups within UFB and PAM. In PAM, percentages of 
canopy coverage are considerably lower in high-high clusters than low-low clusters. 
 
 Considering the land cover variables, there are significantly greater proportions of developed 
land within the low-high group than other groups in UFB. In ROC, there are significantly greater 
proportions of developed land within high-high clusters than the other groups, especially than the 
high-low group. Proportions of agricultural land and land cover type water also significantly differ 
between groups within ROC and PAM study areas.  
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Table 5.3. Kruskal-Wallis Tests based on Differences in Total Stream Length per Catchment between LIDAR-derived and 
NHDPlus Datasets 

 

Site Group 

Variable 

Area Canopy Slope Developed Forest Agriculture Water 

UFB 

HH (N=135) 196.20 61.65 17.25 0.35 84.30 5.37 0.13 

LL (N=60) 141.85 70.32 14.77 1.14 90.21 4.94 0.04 

LH (N=94) 198.99 76.61 20.23 0.00 92.40 1.93 0.03 

HL (N=52) 103.19 64.05 16.10 0.15 80.97 5.38 0.00 

Asymp. Sig. .010 .001 .022 .505 .086 .006 .000 

ROC 

HH (N=135) 764.95 37.35 4.78 0.95 49.79 39.95 1.21 

LL (N=85) 120.43 27.25 3.52 0.08 45.01 45.55 0.16 

LH (N=100) 165.64 35.29 4.62 0.32 49.05 42.26 0.83 

HL (N=9) 427.67 35.00 3.25 1.20 50.40 49.14 0.29 

Asymp. Sig. .000 .004 .000 .126 .367 .312 .000 

PAM 

HH (N=43) 1,300.70 29.48 0.81 0.01 10.14 49.26 23.12 

LL (N=57) 84.15 21.83 0.82 0.00 27.43 36.32 23.88 

LH (N=54) 118.22 11.28 0.97 0.00 7.22 71.85 5.90 

HL (N=4) 559.56 4.24 0.42 0.38 4.87 6.76 87.10 

Asymp. Sig. .000 .076 .002 .005 .001 .000 .005 

 

Note: Values are median values of landscape characteristic variables within each of the spatial pattern groups. Dark lines separating rows indicate 

separate analyses. HH = high-high, LL = low-low, LH = low-high, HL = high-low 
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Table 5.4. Kruskal-Wallis Tests based on Differences in Drainage Density per Catchment between LIDAR-derived and 
NHDPlus Datasets 

 

Site Group 

Variable 

Area Canopy Slope Developed Forest Agriculture Water 

UFB 

HH (N=66) 139.28 57.54 14.74 0.15 75.60 4.44 0.30 

LL (N=12) 32.04 53.18 10.91 0.00 77.30 9.66 0.54 

LH (N=14) 63.22 71.81 12.91 2.10 80.37 0.16 0.10 

HL (N=35) 66.96 52.85 9.60 2.62 69.23 12.89 0.46 

Asymp. Sig. .002 .705 .056 .342 .606 .002 .936 

ROC 

HH (N=82) 317.61 36.94 5.36 0.00 53.39 39.74 1.84 

LL (N=13) 16.20 13.32 4.07 0.00 41.38 50.00 1.67 

LH (N=6) 65.88 20.16 2.86 0.00 46.51 51.38 0.00 

HL (N=21) 53.53 31.62 5.00 4.93 47.32 36.96 0.21 

Asymp. Sig. .000 .001 .000 .001 .047 .113 .001 

PAM 

HH (N=66) 92.07 34.65 1.01 0.00 36.90 10.67 40.82 

LL (N=12) 12.06 0.00 0.78 0.00 0.00 0.00 100.00 

LH (N=14) 6.03 12.73 0.79 0.00 9.19 0.81 79.14 

HL (N=35) 92.12 16.29 0.82 0.00 15.47 7.62 62.79 

Asymp. Sig. .002 .000 .003 .115 .000 .038 .001 

 
Note: Values are median values of landscape characteristic variables within each of the spatial pattern groups. Dark lines separating rows indicate 

separate analyses. HH = high-high, LL = low-low, LH = low-high, HL = high-low 
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Table 5.5. Kruskal-Wallis Tests based on Differences in Reach Frequency per Catchment between LIDAR-derived and 
NHDPlus Datasets 

 

Site Group 

Variable 

Area Canopy Slope Developed Forest Agriculture Water 

UFB 

HH (N=125) 139.93 77.41 17.53 0.00 94.55 1.79 0.00 

LL (N=77) 156.60 73.69 18.27 0.00 90.68 5.36 0.06 

LH (N=119) 114.74 66.16 16.26 0.00 87.82 2.70 0.01 

HL (N=43) 185.93 68.18 15.13 0.18 91.29 4.71 0.11 

Asymp. Sig. .077 .042 .607 .812 .165 .027 .068 

ROC 

HH (N=143) 726.93 38.32 4.72 0.94 50.67 39.45 1.27 

LL (N=70) 51.80 36.17 4.36 0.00 53.69 28.01 0.15 

LH (N=105) 187.74 36.81 4.60 0.17 48.71 40.87 0.61 

HL (N=17) 263.33 38.00 4.58 3.25 52.74 34.90 0.37 

Asymp. Sig. .000 .741 .362 .075 .716 .003 .000 

PAM 

HH (N=125) 440.10 35.39 0.97 0.02 33.55 22.65 26.70 

LL (N=77) 99.89 9.65 0.84 0.00 7.19 45.55 14.01 

LH (N=119) 143.99 18.35 0.87 0.00 12.46 32.40 32.53 

HL (N=43) 208.57 23.67 0.83 0.00 14.24 36.65 31.07 

Asymp. Sig. .000 .000 .058 .006 .000 .149 .106 

 

Note: Values are median values of landscape characteristic variables within each of the spatial pattern groups. Dark lines separating rows 

indicate separate analyses. HH = high-high, LL = low-low, LH = low-high, HL = high-low 
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Table 5.6. Kruskal-Wallis Tests based on Differences in Mean Reach Length per Catchment between LIDAR-derived and 
NHDPlus Datasets 

 

Site Group  

Variable 

Area Canopy Slope Developed Forest Agriculture Water 

UFB 

HH (N=87) 156.60 72.13 15.22 0.49 88.74 4.09 0.06 

LL (N=95) 127.90 75.58 17.53 0.00 93.30 2.16 0.00 

LH (N=33) 137.43 58.75 14.41 7.25 78.55 3.27 0.06 

HL (N=119) 117.81 82.12 17.38 0.00 94.53 1.51 0.00 

Asymp. Sig. .500 .036 .339 .000 .029 .203 .575 

ROC 

HH (N=93) 73.44 35.48 4.64 4.19 51.15 21.02 0.32 

LL (N=74) 781.53 32.63 4.33 1.54 45.57 41.34 1.05 

LH (N=11) 140.48 39.08 4.20 0.17 57.89 28.95 0.10 

HL (N=95) 242.48 36.11 4.62 0.09 48.21 42.23 0.93 

Asymp. Sig. .000 .616 .302 .001 .352 .000 .001 

PAM 

HH (N=87) 57.55 19.13 0.85 0.00 18.04 5.20 56.48 

LL (N=95) 297.00 35.32 0.88 0.04 30.36 26.82 17.41 

LH (N=33) 160.57 22.04 0.88 0.00 17.25 5.31 46.30 

HL (N=119) 93.68 24.95 1.01 0.00 30.46 13.02 38.44 

Asymp. Sig. .000 .029 .499 .295 .028 .046 .001 

 

Note: Values are median values of landscape characteristic variables within each of the spatial pattern groups. Dark lines separating rows indicate 

separate analyses. HH = high-high, LL = low-low, LH = low-high, HL = high-low 
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Figure 5.16. Upper French Broad Watershed: Area, Canopy Coverage, and Slope Variables  
 

Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.17. Rocky Watershed: Area, Canopy Coverage, and Slope Variables 
 

Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.18. Pamlico Watershed: Area, Canopy Coverage, and Slope Variables 
 

Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.19. Upper French Broad Watershed: Variables  Showing Proportions of 
Land Cover Types Per Catchment 

 
Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.20. Rocky Watershed: Variables  Showing Proportions of Land Cover 
Types Per Catchment 

 
Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.21. Pamlico Watershed: Variables  Showing Proportions of Land Cover 
Types Per Catchment 

 
Note: Values are displayed using natural breaks cut points in ArcMap 10. 
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Figure 5.22. Aspect per Catchment: Upper French Broad, Rocky, and Pamlico Watersheds  
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5.5 Spearman Rank Correlation Analysis Results 

Spearman Rank Correlation test results show that there are several significant correlations 
between landscape characteristics (Figures 5.16 through 5.22) and spatial discrepancies between the 
LIDAR-derived and NHDPlus stream networks in each of the study areas. Significant correlations 
between landscape characteristics and catchment areas additionally indicate that catchment area may 
be a factor influencing some relationships between landscape characteristic variables and spatial 
discrepancy variables (See Table A.6 in Appendix).  

5.5.1 Total Stream Length per Catchment 

Correlation analysis results between ∆L and landscape variables are displayed in Table 5.7. A 
strong positive correlation exists between ∆L and catchment area in ROC (Rho = 0.685, Sig. =0 
.000). A slightly strong relationship between ∆L and catchment area also exists in PAM (Rho = 
0.361, 0.000) and a lower significant relationship exists in UFB. Relationships are also significant 
between ∆L and canopy coverage, and ∆L and slope, in each of the study areas. ∆L are negatively 
related to percent canopy coverage in UFB, and positively related to canopy coverage in ROC and 
PAM. A negative correlation exists between slope and ∆L in UFB, and positive relationships exist 
between slope and ∆L in ROC and PAM study areas. 

 
Results also show that ∆L are significantly related to various land cover variables. Positive 

relationships exist in each study area between ∆L and developed land. ∆L are negatively related to 
forest in UFB and positively related to forest in ROC and PAM. ∆L is positively related to 
agriculture in UFB. Water is positively related to ∆L values in each of the study areas but more 
strongly in ROC study area (Rho = 0.337, Sig. = 0.000). 

 
Low correlations exist between ∆L and specific aspects. In UFB, ∆L are negatively 

correlated with south-facing slopes and positively related to northwest-facing slopes. A slight 
positive relationship also exists between ∆L and northern aspects in UFB. ∆L values are positively 
related to east-facing slopes and negatively related to south-facing slopes in ROC. PAM study area 
contains slightly significant positive relationships between ∆L and northeast aspects and ∆L and 
southwest aspects. 

5.5.2 Drainage Density per Catchment 

Correlation analysis results between ∆D values and landscape variables are displayed in Table 
5.8. The strongest relationship is between ∆D and catchment area in ROC watershed (Rho = 0.510, 
Sig. = 0.000). A slightly strong relationship between ∆D and catchment area also exists within PAM 
(Rho = 0.227, Sig. = 0.000). Significant correlations exist for each of the study areas between ∆D 
and canopy coverage, and ∆D and slope. A slightly strong relationship exists between ∆D and slope 
in ROC (Rho =0.228, Sig. = 0.000). Slope and canopy coverage are each negatively related to ∆D in 
UFB and positively related to ∆D in ROC and PAM.  

 
Several correlations exist between ∆D and types of land cover. ∆D is positively related to 

both developed land and water in each of the study areas. Forest and ∆D are negatively related in 
UFB and positively correlated in ROC and PAM. There is a weak positive relationship between ∆D 
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and agriculture in UFB. Significant relationships exist between ∆D and water in all of the study 
areas; ROC contains a fairly strong relationship (Rho = 0.305, Sig. = 0.000). 

 
∆D is also slightly related to certain aspects in each of the study areas. In UFB study area, 

∆D is positively correlated to north-oriented slopes and a negative correlation exists between ∆D 
and southeastern aspects. ∆D is also positively related to northwest-facing slopes and negatively 
related to south-oriented slopes. ∆D is positively correlated to eastern aspects and negatively related 
to south-facing aspects in ROC. A slightly significant positive relationship also exists between ∆D 
and west-oriented slopes in ROC.  In PAM, there are slight positive relationships between ∆D and 
northeastern aspects and ∆D and southeastern aspects. 

5.5.3 Stream Reach Frequency per Catchment 

Correlation analysis results between ∆F and landscape characteristics are shown in Table 5.9. 
There is a notably strong correlation between ∆F and catchment area in ROC study area (Rho = 
0.741, Sig. = 0.000) and reasonably strong relationships in UFB and PAM (UFB: Rho = 0.473, Sig. 
= 0.000; PAM: Rho = 0.374, Sig. = 0.000). Positive relationships also exist within each study area 
between ∆F and canopy coverage, ∆F and slope, and ∆F and certain land cover types. ∆F is 
significantly related to developed land in both ROC and PAM, to forest in UFB and PAM, to 
agriculture in UFB, and to water in ROC. There are slightly strong correlations between ∆F and 
developed land in PAM (Rho = 0.230, Sig. = 0.000) and between ∆F and water in ROC (Rho = 
0.234, Sig. = 0.000). 

 
 Low correlations exist between ∆F and various aspects. In UFB, there is a slightly 

significant negative relationship between ∆F and south-facing slopes and a positive correlation 
between ∆F and northwest-facing slopes. In ROC, ∆F is slightly positively related to east and 
southeast-facing slopes, negatively related to south-facing slopes and slightly related to southwest-
oriented slopes. In PAM, slight negative correlations exist between ∆F and north-oriented slopes 
and ∆F and northwest-facing slopes. PAM contains significant positive relationships between ∆F 
and northeast-oriented slopes and ∆F and east-facing slopes. 

5.5.4 Mean Stream Reach Length per Catchment 

Correlation analysis results between mean reach length and landscape characteristics are 

displayed in Table 5.10. Strong correlations exist between ∆ ̅ and catchment areas for UFB and 
ROC watersheds (UFB: Rho = -0.435, Sig. = 0.000; ROC: Rho = -0.510, Sig. = 0.000). PAM 

contains a lower negative correlation between ∆ ̅ and catchment area.  
 

Slightly significant positive relationships exist between ∆ ̅ and slope in ROC and PAM study 

areas. None of the study areas contain significant relationships between ∆ ̅ and canopy coverage. In 

terms of land cover, ∆ ̅ is shown to be negatively related to developed land, agricultural land, and 

water in ROC. In UFB ∆ ̅ is negatively correlated to forest and positively related to water. PAM 

contains a slightly significant negative relationship between ∆ ̅ and agriculture, and a positive 

correlation between ∆ ̅ and water. A few small relationships exist between ∆ ̅ values and aspect. 

∆ ̅ values are negatively correlated to southeast-facing slopes in UFB and positively correlated to 
northwest-facing slopes in ROC and PAM.
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Table 5.7. Spearman Rank Correlation Tests of Landscape Characteristics and Differences 
in Total Stream Length per Catchment between LIDAR-derived and NHDPlus Stream 

Network Datasets 
 

Landscape 
Variable 

 
UFB 

 
ROC 

 
PAM 

 Correlation and 
Significance  ∆L 

(m) 
 ∆L 

(m) 
 ∆L 

(m) 
 

    

Area 
 .125**  .685**  .361**  Rho 

 .000  .000  .000  Sig. (2-tailed) 

Canopy  
-.107** 

 
.179** 

 
.166** 

 
Rho 

 
.000 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Slope  
-.057** 

 
.245** 

 
.102** 

 
Rho 

 
.007 

 
.000 

 
.001 

 
Sig. (2-tailed) 

Developed  
.058** 

 
.119** 

 
.182** 

 
Rho 

 
.005 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Forest  
-.100** 

 
.109** 

 
.077* 

 
Rho 

 
.000 

 
.000 

 
.016 

 
Sig. (2-tailed) 

Agriculture  
.081** 

 
-.049 

 
-.021 

 
Rho 

 
.000 

 
.087 

 
.513 

 
Sig. (2-tailed) 

Water  
.172** 

 
.337** 

 
.086** 

 
Rho 

 
.000 

 
.000 

 
.007 

 
Sig. (2-tailed) 

Aspect_N  
.051* 

 
-.050 

 
-.019 

 
Rho 

 
.015 

 
.076 

 
.552 

 
Sig. (2-tailed) 

Aspect_NE  
.010 

 
-.055 

 
.072* 

 
Rho 

 
.646 

 
.054 

 
.024 

 
Sig. (2-tailed) 

Aspect_E  
-.017 

 
.091** 

 
-.009 

 
Rho 

 
.410 

 
.001 

 
.781 

 
Sig. (2-tailed) 

Aspect_SE  
-.032 

 
.037 

 
.012 

 
Rho 

 
.121 

 
.186 

 
.717 

 
Sig. (2-tailed) 

Aspect_S  
-.068** 

 
-.145** 

 
-.029 

 
Rho 

 
.001 

 
.000 

 
.370 

 
Sig. (2-tailed) 

Aspect_SW  
-.007 

 
-.026 

 
.063* 

 
Rho 

 
.732 

 
.350 

 
.049 

 
Sig. (2-tailed) 

Aspect_W  
-.016 

 
.055 

 
-.024 

 
Rho 

 
.452 

 
.054 

 
.456 

 
Sig. (2-tailed) 

Aspect_NW  
.092** 

 
-.011 

 
-.024 

 
Rho 

 
.000 

 
.703 

 
.459 

 
Sig. (2-tailed) 

 
 

Note: Significant results are boldfaced. **Significant at 95 percent confidence. *Significant at 90 percent 
confidence. 

 



www.manaraa.com

  

55 
 

Table 5.8. Spearman Rank Correlation Tests of Landscape Characteristics and Differences 
in Drainage Density per Catchment between LIDAR-derived and NHDPlus Stream 

Network Datasets 
 

Landscape 
Variable 

 
UFB 

 
ROC 

 
PAM 

 Correlation and 
Significance 

 
∆D 

(m/ha)  
∆D 

(m/ha)  
∆D 

(m/ha)  

Area 
 .040  .510**  .227**  Rho 

 .057  .000  .000  Sig. (2-tailed) 

Canopy  
-.115** 

 
.158** 

 
.193** 

 
Rho 

 
.000 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Slope  
-.047* 

 
.228** 

 
.186** 

 
Rho 

 
.024 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Developed  
.057** 

 
.068* 

 
.111** 

 
Rho 

 
.007 

 
.017 

 
.000 

 
Sig. (2-tailed) 

Forest  
-.105** 

 
.118** 

 
.090** 

 
Rho 

 
.000 

 
.000 

 
.005 

 
Sig. (2-tailed) 

Agriculture  
.098** 

 
-.054 

 
.021 

 
Rho 

 
.000 

 
.055 

 
.508 

 
Sig. (2-tailed) 

Water  
.131** 

 
.305** 

 
.066* 

 
Rho 

 
.000 

 
.000 

 
.038 

 
Sig. (2-tailed) 

Aspect_N  
.044* 

 
-.016 

 
-.040 

 
Rho 

 
.037 

 
.579 

 
.214 

 
Sig. (2-tailed) 

Aspect_NE  
.023 

 
-.046 

 
.067* 

 
Rho 

 
.267 

 
.108 

 
.034 

 
Sig. (2-tailed) 

Aspect_E  
.006 

 
.087** 

 
.038 

 
Rho 

 
.774 

 
.002 

 
.228 

 
Sig. (2-tailed) 

Aspect_SE  
-.042* 

 
.028 

 
.063* 

 
Rho 

 
.044 

 
.321 

 
.050 

 
Sig. (2-tailed) 

Aspect_S  
-.059** 

 
-.142** 

 
-.022 

 
Rho 

 
.005 

 
.000 

 
.489 

 
Sig. (2-tailed) 

Aspect_SW  
-.022 

 
-.049 

 
.032 

 
Rho 

 
.300 

 
.085 

 
.319 

 
Sig. (2-tailed) 

Aspect_W  
-.031 

 
.058* 

 
-.034 

 
Rho 

 
.144 

 
.042 

 
.285 

 
Sig. (2-tailed) 

Aspect_NW  
.098** 

 
-.003 

 
-.002 

 
Rho 

 
.000 

 
.923 

 
.955 

 
Sig. (2-tailed) 

 

 
Note: Significant results are boldfaced. **Significant at 95 percent confidence. *Significant at 90 percent 

confidence. 
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Table 5.9. Spearman Rank Correlation Analysis of Landscape Characteristics and 
Differences in Reach Frequency per Catchment between LIDAR-derived and NHDPlus 

Stream Network Datasets 
 

Landscape 
Variable 

 
UFB 

 
ROC 

 
PAM 

 Correlation and 
Significance 

 
∆F 

(N reaches)  
∆F 

(N reaches)  
∆F 

(N reaches)  

Area 
 .473**  .741**  .374**  Rho 

 .000  .000  .000  Sig. (2-tailed) 

Canopy  
.070** 

 
.094** 

 
.198** 

 
Rho 

 
.001 

 
.001 

 
.000 

 
Sig. (2-tailed) 

Slope  
.151** 

 
.125** 

 
.123** 

 
Rho 

 
.000 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Developed  
.016 

 
.122** 

 
.230** 

 
Rho 

 
.448 

 
.000 

 
.000 

 
Sig. (2-tailed) 

Forest  
.057** 

 
.042 

 
.199** 

 
Rho 

 
.007 

 
.140 

 
.000 

 
Sig. (2-tailed) 

Agriculture  
.042* 

 
.046 

 
.018 

 
Rho 

 
.047 

 
.104 

 
.574 

 
Sig. (2-tailed) 

Water  
-.038 

 
.234** 

 
.001 

 
Rho 

 
.073 

 
.000 

 
.972 

 
Sig. (2-tailed) 

Aspect_N  
.017 

 
-.027 

 
-.064* 

 
Rho 

 
.409 

 
.349 

 
.045 

 
Sig. (2-tailed) 

Aspect_NE  
-.009 

 
-.046 

 
.099** 

 
Rho 

 
.654 

 
.108 

 
.002 

 
Sig. (2-tailed) 

Aspect_E  
.024 

 
.059* 

 
.067* 

 
Rho 

 
.255 

 
.036 

 
.035 

 
Sig. (2-tailed) 

Aspect_SE  
.011 

 
.061* 

 
-.022 

 
Rho 

 
.590 

 
.031 

 
.487 

 
Sig. (2-tailed) 

Aspect_S  
-.051* 

 
-.128** 

 
.014 

 
Rho 

 
.015 

 
.000 

 
.662 

 
Sig. (2-tailed) 

Aspect_SW  
-.030 

 
-.066* 

 
.038 

 
Rho 

 
.157 

 
.021 

 
.232 

 
Sig. (2-tailed) 

Aspect_W  
-.017 

 
.044 

 
-.026 

 
Rho 

 
.423 

 
.118 

 
.415 

 
Sig. (2-tailed) 

Aspect_NW  
.058** 

 
.026 

 
-.077* 

 
Rho 

 
.005 

 
.353 

 
.016 

 
Sig. (2-tailed) 

 
Note: Significant results are boldfaced. **Significant at 95 percent confidence. *Significant at 90 percent 

confidence. 
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Table 5.10. Spearman Rank Correlation Tests of Landscape Characteristics and Differences 
in Mean Reach Length per Catchment between LIDAR-derived and NHDPlus Stream 

Network Datasets 
 

Landscape 
Variable 

 
UFB 

 
ROC 

 
PAM 

 Correlation and 
Significance 

 
∆ ̅ 

(m)  
∆ ̅ 

(m)  
∆ ̅ 

(m)  

Area 
      -.435**  -.510**  -.139**  Rho 

    .000  .000  .000  Sig. (2-tailed) 

Canopy  
.002 

 
-.025 

 
-.025 

 
Rho 

 
.946 

 
.438 

 
.438 

 
Sig. (2-tailed) 

Slope  
.047 

 
.074* 

 
.074* 

 
Rho 

 
.097 

 
.020 

 
.020 

 
Sig. (2-tailed) 

Developed  
.027 

 
-.086** 

 
-.036 

 
Rho 

 
.000 

 
.002 

 
.262 

 
Sig. (2-tailed) 

Forest  
-.137** 

 
.030 

 
-.051 

 
Rho 

 
.000 

 
.283 

 
.108 

 
Sig. (2-tailed) 

Agriculture  
.007 

 
-.088** 

 
-.080* 

 
Rho 

 
.742 

 
.002 

 
.012 

 
Sig. (2-tailed) 

Water  
.122** 

 
-.076** 

 
.142** 

 
Rho 

 
.000 

 
.007 

 
.000 

 
Sig. (2-tailed) 

Aspect_N  
.035 

 
.014 

 
.014 

 
Rho 

 
.217 

 
.660 

 
.660 

 
Sig. (2-tailed) 

Aspect_NE  
.031 

 
.001 

 
.001 

 
Rho 

 
.267 

 
.970 

 
.970 

 
Sig. (2-tailed) 

Aspect_E  
-.001 

 
-.032 

 
-.032 

 
Rho 

 
.959 

 
.310 

 
.310 

 
Sig. (2-tailed) 

Aspect_SE  
-.079** 

 
-.006 

 
-.006 

 
Rho 

 
.005 

 
.845 

 
.845 

 
Sig. (2-tailed) 

Aspect_S  
.033 

 
-.002 

 
-.002 

 
Rho 

 
.237 

 
.946 

 
.946 

 
Sig. (2-tailed) 

Aspect_SW  
.043 

 
.009 

 
.009 

 
Rho 

 
.126 

 
.783 

 
.783 

 
Sig. (2-tailed) 

Aspect_W  
.009 

 
-.025 

 
-.025 

 
Rho 

 
.761 

 
.427 

 
.427 

 
Sig. (2-tailed) 

Aspect_NW  
-.037 

 
.086** 

 
.086** 

 
Rho 

 
.197 

 
.007 

 
.007 

 
Sig. (2-tailed) 

 

Note: Significant results are boldfaced. **Significant at 95 percent confidence. *Significant at 90 percent 
confidence. 
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Chapter 6 Discussion and Conclusions  

6.1 Discussion 

Extensive progress has collectively been made in water resource management and planning. 
However, there is currently an increasing demand for improved stream network mapping to enhance 
watershed analysis and modeling results for making more informed water resource management and 
policy decisions. For example, there has been much recent interest by state and federal agencies to 
improve the spatial accuracy and classification of upstream waters. Headwaters, especially ephemeral 
streams, are often more difficult to accurately depict in the production of stream network datasets.  

Two likely candidates for improved stream network mapping are LIDAR-derived and 
NHDPlus stream network datasets, which are universally accepted to be high quality stream network 
datasets. It is impossible to create an entirely ‘true’ spatial representation of drainage networks as the 
water cycle is a complex open system comprising various anthropogenic impacts and environmental 
conditions and processes, which continuously alter the shapes and extents of individual flow paths. 
However, stream network datasets provide a fundamental framework for watershed analysis and 
modeling, which is essential for making effective decisions regarding various water-related issues. 
Therefore, it is important that stream networks are constructed to model natural paths of water 
draining earth’s surface as realistically as possible. Moreover, spatially inaccurate depictions of 
networks may yield erroneous analysis and modeling results, leading to false implications. 

A primary objective of this study is to contribute to the growing body of literature on stream 
network mapping for watershed analysis and modeling. Metrics used to characterize drainage 
networks in this study are based on established measures that have commonly been used for 
quantifying drainage network morphologies and analyzing watershed processes. This research 
analyzes discrepancies between networks directly based on distribution differences of individual 
reaches, and in terms of discrepancies calculated for four main catchment-level metrics: total stream 
length per catchment, drainage density per catchment, reach frequency per catchment, and mean 
stream length per catchment. Catchment-level variables were intended to locally account for patterns 
of spatial discrepancies between LIDAR-derived and NHDPlus stream network datasets and imply 
how spatial discrepancies between LIDAR-derived and NHDPlus networks may influence 
watershed analysis and modeling applications. 

Overall results of this research provide quantitative evidence of significant spatial 
discrepancies existing between LIDAR-derived and NHDPlus stream network datasets and indicate 
various relationships between landscape characteristics and certain types of discrepancies between 
the datasets. Based on known potential reasons that spatial discrepancies may occur between the 
datasets, I hypothesized that significant spatial discrepancies would exist between the distributions 
of individual reach lengths and in terms of four types of local discrepancies quantified per NHDPlus 
catchment. The Mann-Whitney U results show significant differences in the distributions of reach 
lengths between the datasets and Wilcoxon Signed-Rank tests indicate significant spatial 
discrepancies per catchment between the networks except in terms of drainage density in UFB. It is 
not surprising that local drainage densities are not shown to differ between networks in UFB 
because differences in total network drainage density were initially minimized per study area to allow 
for fair comparisons between the datasets. Since area is a function of drainage density and catchment 
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areas are much less variable throughout UFB compared to ROC or PAM, local drainage densities 
were consequently less likely to differ in UFB compared to ROC or PAM. 

Because of their high resolution, LIDAR-derived DEMs have been empirically shown to 
delineate more precise and accurate DEM-derived stream networks than other commonly used 
DEMs. Thus, I hypothesized that LIDAR-derived networks would contain greater spatial detail 
compared to NHDPlus networks. Catchments containing longer total stream lengths, higher 
drainage densities, higher reach frequencies, and shorter mean reach lengths locally indicate that 
LIDAR-derived networks are more detailed than NHDPlus.  

 
In UFB, results support my hypothesis in terms of ∆L, ∆D, and ∆F for approximately 50% 

of the catchments and in a much greater proportion of catchments in terms of ∆ ̅ (Figure 5.2). This 
is possibly because there is not always a linear morphometric association between reach length and 
other morphometric characteristics such as drainage density, reach frequency, and total stream 
length. These results are noticeable by the overall visual pattern of discrepancies between LIDAR-
derived and NHDPlus datasets. As shown in Figure 5.2, the networks predominantly appear to 
spatially overlap. However, in areas that streams do not appear to spatially match, LIDAR-derived 
reaches tend to branch outward along streams whereas NHDPlus reaches tend to extend beyond 
points at which LIDAR-derived streams initiate.  

 
Catchments contain more spatial detail in LIDAR-derived networks than NHDPlus were 

more prominent overall in ROC compared to UFB. In ROC, the networks largely appear to spatially 
match but spatial discrepancies are noticeably apparent throughout the watershed (Figure 5.2). 
Although there appear to be similarities between the spatial discrepancies in ROC and UFB, 
magnitudes and distributions of their values differ (Figures 5.9 through 5.12). This is likely because 
in contrast to UFB, topography and land cover are more variable throughout ROC (Figures 5.16, 
5.17, 5.19, and 5.20). Further, the large variability in ROC suggests that a single flow accumulation 
threshold was likely inappropriate for generating the LIDAR-derived network and a locally tuned 
threshold may have worked better.  

 
Of the three watersheds, results show that PAM contains spatial discrepancies between 

LIDAR-derived and NHDPlus networks that are least comparable to the other study areas (Figure 
5.4). In PAM watershed, it is clear from visual assessment that the LIDAR-derived network is highly 
distorted and does not align well with natural drainage features or NHDPlus streams. This is likely 
because the automated stream network extraction methods were insufficient for properly deriving 
certain drainage features such as braided and sinuous streams, large wetlands, ditches, and canals 
(Baker et al., 2006 and Garcia, 2004). Because PAM study area contains many anthropogenic 
drainage features, ancillary datasets may be required to improve delineation in these areas. Additional 
methods are likely needed as well to properly delineate streams in wetland areas. Also, like ROC, 
because of the local variability of land cover and topography, applying a single flow accumulation 
threshold was likely not an optimal method for generating the LIDAR-derived network. Results for 
PAM warrant further reconciliation of data to better understand elucidate discrepancies between the 
datasets.  

 
Spatial autocorrelation analysis results reveal spatial patterns of discrepancies between 

LIDAR-derived and NHDPlus networks for watersheds of given scales and physiographies. Based 
on the review of literature, I hypothesized that different spatial patterns of discrepancies would exist 
among the study areas because of their considerably different landscapes. Moran’s I values and LISA 
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test results support this hypothesis by indicating different overall and local spatial patterns of 
discrepancies existing between the watersheds. Not surprisingly, patterns of spatial discrepancies 
appear to coincide with the variability of landscape characteristics within each of the study areas. 
Kruskal-Wallis tests and correlation analysis results support this observation. In general, these results 
reveal different patterns of discrepancies existing among watersheds of comparable scales but 
containing different landscapes.  

 
Landscape characteristics and watershed morphology have been empirically linked to spatial 

differences between stream network datasets generated at different spatial scales, and/or produced 
from different sources, methods, and measurement schemes (e.g. Gyasi-Agyei et al. 1995; Barber 
and Shortridge, 2005; James et al. 2007; Li and Wong, 2009; Zhao et al. 2009). Therefore, given 
known potential benefits and limitations associated with NHDPlus and the LIDAR-derived 
networks, I expected that spatial patterns of discrepancies would be associated with landscape 
characteristics and that particular types of strong associations would exist. I hypothesized that 
Kruskal-Wallis test results would show values of individual landscape characteristic variables to 
significantly differ between spatial discrepancy pattern groups (from LISA tests). Also, I 
hypothesized that strong correlations would exist between spatial discrepancy values and catchment 
area, canopy coverage, and slope.  

 
Not surprisingly, Kruskal-Wallis results show that catchment areas significantly differ 

between spatial discrepancy pattern groups. Catchment areas are statistically different between 

groups in terms of ∆L and ∆D in all of the study areas and in terms of ∆F and ∆ ̅ in ROC and 
PAM. Median values of catchment areas per group show that larger catchments tend toward high-
high ∆L and ∆D clusters, and smaller catchments tend toward low-low ∆L and ∆D clusters in all of 

the study areas. Larger catchments also tend to be coupled with high-high ∆F and ∆ ̅ clusters and 

smaller catchments tend toward low-low ∆F and ∆ ̅ clusters in ROC and PAM.  
 
Of note, Kruskal-Wallis results also indicate significant differences in canopy coverage 

between spatial discrepancy pattern groups. In ROC study area, percentages of canopy coverage are 
significantly lower in low-low ∆L clusters than other groups. In UFB and ROC study areas, 
proportions of canopy coverage are much higher in high-high ∆D clusters than low-low ∆D clusters 
and proportions of canopy coverage are much higher in high-high ∆F clusters than low-low ∆F 
clusters. Results show that catchments containing less dense canopy coverage are most associated 
with high-high ∆L clusters and least associated with low-low ∆L clusters.  

 
The results also indicate connections between land cover types and spatial discrepancies. 

Overall, Kruskal-Wallis results indicate general associations between landscape characteristics and 
spatial patterns of discrepancies for watersheds of given scales and physiographies; however, some 
of the results are slightly unclear. Bivariate LISA analysis appears to have potential to clarify 
associations between spatial discrepancies and landscape characteristics in a straightforward way by 
quantifying bivariate measures of local spatial autocorrelation. Moreover, the results from this 
analysis complement relationships elucidated in the correlation analysis, which provides slightly 
clearer measures of association between the variables. 

 
Correlation analysis results show several significant relationships between landscape 

characteristics and spatial discrepancy variables for each of the study areas.  In my last hypothesis, I 
predicted that strong relationships would exist between spatial discrepancies and catchment area, 
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canopy, and slope. The strongest overarching relationships are between catchment area and spatial 
discrepancy variables, which supports my hypothesis. Relationships are generally less strong between 
spatial discrepancies and slope and spatial discrepancies and canopy; however, a few notable 
relationships exist.  

 
In UFB, the correlation between ∆L and catchment area is fairly weak and there is not a 

significant relationship between ∆D and catchment area. This is likely because overall drainage 
densities were minimized between the networks and catchment area is much less variable in UFB 
compared to the other study areas. Therefore, local drainage densities were less likely to differ in 
UFB compared to ROC or PAM. Also, since total stream length per catchment is a function of local 
drainage density, it is not surprising that the correlation between ∆L and catchment area (Rho = 
0.125, Sig. = 0.000) is not very strong in UFB. In UFB, there is also a strong positive correlation 

between catchment area and ∆F, and a strong negative correlation between ∆ ̅ and catchment area. 
In ROC, strong positive correlations exist between catchment area and ∆L, ∆D, and ∆F and a 

strong negative correlation exists between catchment area and ∆ ̅. In PAM, strong positive 
correlations also exist between catchment area and ∆L, ∆D, and ∆F and a strong negative 

correlation exists between catchment area and ∆ ̅.  
 
These results as well as visualizations of the networks (Figures 5.1, 5.2, and 5.3) suggest that 

as catchment areas increase, streams increasingly branch out and local frequencies of low-order 
LIDAR-derived streams appear to become higher than NHDPlus; as do local drainage densities and 
total stream lengths per catchment. Low-order reaches are often shorter than higher order reaches; 
thus, it is not surprising that catchment area is positively related to reach frequency and negatively 
related to mean reach length. 

 
Relationships existing between spatial discrepancies and canopy coverage and spatial 

discrepancies and slope appear similar. Because literature shows that LIDAR-derived DEMs are 
capable of generating superior networks in densely vegetated areas compared to networks derived 
from other common DEM sources, I expected results to show that LIDAR-derived networks 
become more detailed than NHDPlus as tree canopy density increases.  Also, since DEM-derived 
slope models are typically known to improve in spatial accuracy with higher resolution DEMs (Li 
and Wong, 2010), I expected LIDAR-derived networks to become more detailed as slope increased.  

 
Significant correlations exist between spatial discrepancies and canopy and spatial 

discrepancies and slope but many of them are fairly weak. In ROC and PAM, results indicate that 
the LIDAR-derived networks may become slightly more detailed than NHDPlus as slope and 
canopy density increases. However, results notably differ for UFB. In UFB, negative correlations 
exist between ∆L and canopy and ∆L and slope. Results also show negative correlations between 
∆D and canopy and ∆D and slope. James et al. (2007) infers that local accuracy of LIDAR data may 
be decreased on steep or vegetated slopes. Since UFB is largely comprised of forested steep 
mountainous terrain, this may potentially be an indication that NHDPlus networks are better in 
these areas.  

 
In each of the study areas, significant relationships were also found between spatial 

discrepancies and aspect, and spatial discrepancies and different types of land cover; however, 
implications for these relationships are not fully understood. Additional analyses and reconciliation 
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of landscape characteristic data could allow for a more in-depth understanding of relationships 
existing between spatial discrepancies and landscape characteristics. 

  
Collectively, results from this study contribute a level of understanding of spatial 

discrepancies between LIDAR-derived and NHDPlus stream network datasets. GIS enhanced the 
analyses in this study by allowing for integration and visualization of spatial data. Results of reach 
and catchment-level tests of significance show strong evidence of spatial discrepancies occurring 
between LIDAR-derived and NHDPlus stream network datasets. Spatial autocorrelation analysis 
further elucidated spatial differences between networks by quantitatively accounting for significant 
global and local spatial patterns of discrepancies between the datasets. Kruskal-Wallis and Spearman 

Rank Correlation analysis results indicate that spatial discrepancies (e.g. ∆L, ∆D, ∆F, and ∆ ̅  
between LIDAR-derived and NHDPlus stream network datasets are related to landscape 
characteristics. Specifically, Kruskal-Wallis test results show that local patterns of spatial 
discrepancies are linked to landscape characteristics, and correlation analysis results indicate 
statistically significant relationships occurring between spatial discrepancies and landscape 
characteristics. Summary statistics of variables and visualizations allow for better clarification of 
analysis results. 

 
The spatial difference variables derived for this study provided useful metrics for quantifying 

spatial discrepancies between LIDAR-derived and NHDPlus networks. Conceptually, differing 
spatial compositions of the datasets indicated by magnitudes and distributions of the spatial 
discrepancy variables correspondingly imply different watershed processes between the datasets. 
Particularly, spatial discrepancies between datasets in terms of differing individual reach lengths and 
frequencies, total steam lengths per catchment (∆L), drainage densities per catchment (∆D), reach 

frequencies per catchment (∆F), and mean reach lengths per catchment (∆ ̅) collectively indicate 
differing in-stream and overland travel times of water and constituents throughout drainage 
networks. In addition, contrasting spatial formations of stream network datasets infer that each of 
the datasets potentially accounts for relatively different volumes of water and quantities of materials 
distributed throughout watersheds, consequently leading to differing watershed analysis and 
modeling outcomes.  

 
Literature shows that drainage density infers overland travel times. For example, higher 

drainage densities indicate closer spacing of streams; thus, lower overland travel times and 
potentially higher peak discharges occurring due to less opportunity for runoff to evaporate or 
infiltrate the land surface (e.g. Gregory and Walling, 1973; Ogunkoya et al., 1984; and Preston et al., 
1998). In areas tending to contain lower infiltration capacities, connections between stream flow and 
drainage density can often be recognized by earlier and higher peak discharges in hydrograph 
readings. Correspondingly, increased runoff leads to increased in-stream flow volumes, which flow 
at higher velocities within networks and lead to higher peak flow magnitudes (Pallard et al., 2008).  

 
Relatedly, stream lengths are also indicative of in-stream flow patterns. For example, longer 

streams potentially signify more time allowed for in-stream flow velocities to increase and 
accordingly for in-stream flow volumes and carrying capacities to increase. Higher flow velocities 
also increase friction along stream beds and channel side walls and facilitate increased erosion and 
transport of materials. Further, as individual reaches are composed of mostly homogenous 
characteristics, junctions between reaches are indicative of changes in the physical and chemical 
compositions of streams (Horn and Hanson, 1994; Moore et al., 2002; Alexander et al., 2007). 
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Correspondingly, differing local reach lengths between stream network datasets are reflective of 
characteristically different drainage network features and watershed processes.  

 
Frequencies of reaches occurring throughout watersheds reflect topological characteristics of 

stream networks, which imply sources and transport of water and materials and changes in the 
physical and chemical compositions of streams. For example, lower reach frequencies existing in 
datasets may indicate that fewer low-order streams are accounted for. Insufficient data measurement 
scales and collection methods can cause small tributaries to be underrepresented in stream network 
datasets. Consequently, this could lead quantities of water and constituents to be omitted from 
watershed analyses, which could lead to erroneous results and false implications.  

 
A large body of work underscores the relevance and importance of spatial compositions of 

stream network datasets to hydrologic applications. For example, several studies indicate how 
headwater characteristics of stream network datasets are highly implicative of hydrology model 
outputs. Notably, results of regional-scale model simulations by Alexander et al. (2007) and Preston 
et al. (1998) demonstrate that downstream waters of regional-scale watersheds are significantly 
influenced by headwater in-stream processes, stream flows, and source loadings. For example, 
Alexander et al. (2007) ascertained a significant positive relationship between drainage density and 
in-stream nitrogen yields, in which more than 60% of nitrogen yields delivered to all streams were 
accounted for in first-order streams of the 1:100,000 scale National Hydrography Dataset (NHD). 
Alexander et al. (2007) suggested that according to the Horton-Strahler stream-order classification 
method, NHD first-order streams would essentially be classified as second-order streams within a 
finer scale stream network dataset. Further, he suggested that a finer-scale network would greatly 
increase estimated proportions of water and constituents accounted for in headwater streams and 
delivered to higher-order streams. 

 
In conclusion, stream network datasets are essential components of a wide range of water-

related applications that influence various decisions affecting ecosystem services to humans and the 
environment, such as flood and drought mitigation, recreational activities, clean drinking water, and 
the conservation of aquatic and terrestrial habitats. Therefore, it is imperative that stream network 
datasets are spatially representative of their naturally occurring flow paths. The analyses results imply 
that the spatial compositions of LIDAR-derived and NHDPlus stream network datasets are 
significantly different based on metrics that are collectively indicative of the quantity, transport, and 
distribution of water and materials throughout watersheds. Moreover, additional work could allow 
for further reconciliation of spatial discrepancies between these datasets and ultimately lead to 
significant impacts on watershed initiatives.  

6.2 Recommendations 

It is important to note that estimations of spatial discrepancies may be slightly conservative 
because channel initiation of the LIDAR-derived networks was controlled by minimizing overall 
drainage density between NHDPlus and LIDAR-derived networks. Also, several more factors can 
be linked to spatial variability between NHDPlus and LIDAR-derived networks than were analyzed 
in this study. Thus, researchers and end-users should only consider results from this study as an 
initial approximation of spatial differences between the datasets. 
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Discerning channel initiation in stream networks is a multivariate problem in which a 
univariate solution was implemented to delineate LIDAR-derived networks for this study. More 
robust methods for discerning channel initiation of the LIDAR-derived networks would potentially 
improve results. The approach used in this study was intended for designing valid comparisons 
between the networks without using ground-truth data. If channel initiation had been determined 
with ground-truth data, resulting spatial discrepancies may have been even greater. However, field 
evidence was determined to be unnecessary with respect to the primary goals of the study.  

Refining methods for generating landscape characteristic variables could improve future 
analyses. Various measures were taken to accurately generate aspect variables to be used in analyses. 
However, aspect variables could be improved through further reconciliation of potentially occurring 
bi-modal and multi-modal aspects within individual catchments. Also, exploratory analysis of land 
cover characteristics without ‘a priori’ assumptions of trends in the data may allow for a better 
understanding of how to improve the classification of landscape characteristic variables for analyses. 
‘A priori’ assumptions are assumptions made about the data before data are processed and analyses 
are implemented. Integrating additional landscape characteristics such as soil and geology in future 
studies may additionally contribute a more comprehensive understanding of spatial discrepancies 
between LIDAR-derived and NHDPlus stream network datasets.  

An obvious future direction would be conducting multivariate analyses of relationships 
between spatial discrepancies and landscape characteristics Multivariate methods could potentially be 
an efficient way to obtain a more comprehensive understanding of relationships between landscape 
characteristics and spatial discrepancies between the datasets. Further, this could allow for 
underlying relationships among landscape characteristic variables to be accounted for, which may 
also decrease bias that potentially influenced outcomes of analyses in this study. Multivariate 
methods were originally proposed to be conducted in this research, but were omitted because of 
several distribution abnormalities among variables requiring additional exploratory analyses to 
ascertain how to most appropriately assimilate them into detailed models without extensively 
compromising the interpretation of results. Future studies aiming to compare LIDAR-derived and 
NHDPlus datasets in terms of stream order could also better explain the spatial discrepancies 
between datasets and relative implications for watershed analysis and modeling.  

Ultimately, how spatial discrepancies of particular types of watersheds influence watershed 
analyses and modeling would best be discerned through incorporating hydrologic simulations in 
similar future studies. Further, methods used in this study indicate valid approaches for 
quantitatively comparing stream network datasets of broad spatial scales. Replication of similar 
analyses at different spatial scales (e.g. regional, national) could additionally provide important 
information for watershed analysis and modeling. In summary, results from this study offer a broad 
preliminary understanding of spatial discrepancies existing between LIDAR-derived and NHDPlus 
stream network datasets, and the research methods described herein may be useful in designing 
more robust methods for similar future studies.  

6.3. Conclusions 

Overall, this study contributes groundwork information for improving the use of stream 
network datasets in water resource applications. Early contributions in the quantitative 
characterization of watershed morphologies and their connections with watershed processes carved 
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a conceptual framework for present-day watershed analysis and modeling applications. In particular, 
these founding quantitative principles have contributed to evaluating the quality of stream network 
datasets and their effectiveness in water resource applications. In this study, the methods employed 
illustrate and reconfirm the practical use of quantitative principles for evaluating stream network 
datasets. The use of GIS supports and enhances the analysis methods conducted in this study 
through allowing for the synthesis and visualization of geospatial data. 

 
Together, results of the three case studies presented herein indicate that significant spatial 

discrepancies exist between NHDPlus and LIDAR-derived stream network datasets. Thus, although 
certain types of high quality stream network datasets, such as NHDPlus and LIDAR-derived 
networks, may be widely accepted to produce reasonable results in watershed analyses, outcomes 
may significantly differ when different types of stream network datasets are used.  

 
Further, results illustrate significant spatial patterns of discrepancies existing between 

LIDAR-derived and NHDPlus stream network datasets. Overall, these results imply that different 
considerations should be taken into account in the selection and application of stream network 
datasets to watersheds of similar orders of magnitude but differing land, water, and climate systems. 
Also, the spatial patterns of discrepancies elucidated between the three watersheds demonstrate how 
global-scale evaluations contribute useful general knowledge of significant spatial differences 
between stream network datasets, and local-scale analyses provide more detailed information for 
improving water resource applications.  

 
Compared to UFB and ROC networks, PAM network contained a greater variety of spatial 

inconsistencies between the NHDPlus and LIDAR-derived networks. The resulting spatial patterns 
of discrepancies among stream networks suggests that stream network datasets of the Coastal Plain 
Province or with respectively similar land, water, and climate systems may require additional 
attention in deriving spatially complete and accurate networks for applications.  

 
Further, results partially support findings from previous studies regarding associations 

between particular types of landscape characteristics and spatial discrepancies between different 
types of stream network datasets. These results also contribute a level of confirmation and 
understanding of how data sources, collection techniques, production methods, and scales of 
measurement have different impacts on resulting spatial compositions of stream network datasets. 
Although results from this study point out a few strong associations between spatial discrepancies 
and landscape characteristics, more robust future analyses of these relationships utilizing multivariate 
techniques could further clarify findings from these analyses and potentially contribute a more 
detailed understanding of the spatial discrepancies and their implications for water resource 
applications. 

 
In summary, this study demonstrates a convenient and useful geographic approach for 

analyzing discrepancies occurring between different types of stream network datasets. The results 
contribute to building an understanding for improving stream network mapping and the utilization 
of stream network datasets in water resource applications. The overarching goal for developing this 
knowledge is to aid in effective management and policy decisions and to better inform researchers 
and end users about improving stream network datasets and applying them appropriately to practical 
issues.  



www.manaraa.com

  

66 
 

References 

Abrahams, A.D. and J.J. Ponczynski. 1984. Drainage density in relation to precipitation intensity in 
the U.S.A. Journal of Hydrology. 75(1-4): 383-388. 
 
Alexander, R. B., E. W. Boyer, R. A. Smith, G. E. Schwarz, and R. B. Moore. 2007. The role of 
headwater streams in downstream water quality. Journal of the American Water Resources Association. 43 
(1): 41-59.  
 
Anselin, L. 2003. GeoDa 0.9 User’s Guide. Spatial Analysis Laboratory, Department of Agricultural 
and Consumer Economics, University of Illinois, Urbana-Champaign. Urbana, IL. 
 
Anselin, L., I. Syabri, and Y. Kho. 2004. GeoDa: An Introduction to Spatial Data Analysis. Spatial 
Analysis Laboratory, Department of Agricultural and Consumer Economics, University of Illinois, 
Urbana-Champaign. Urbana, IL. 
 
Baker, M.E., D.E. Weller, and T.E. Jordan. 2006. Comparison of automated watershed delineations: 
Effects on land cover areas, percentages, and relationships to nutrient discharge. Photogrammetric 
Engineering and Remote Sensing. 72(2): 159-168. 
 
Barber, C.P., and A. Shortridge. 2005. Lidar elevation data for surface hydrologic modeling: 
resolution and representation issues. Cartography and Geographic Information Science. 32(4): 401-410. 
 
Berry, J.K. 1999. GIS technology in environmental management: A brief history, trends and 
probable future. Dekker m. Handbook of Global Environmental Policy and Administration. New York : 
Marcel Dekker. ISBN: 0-8247-1989-1. 
 
Bloschl, G. 2008. Interactive comment on: “A look at the links between drainage density and flood 
statistics” by B. Pallard et al., Hydrology and Earth System Science Discussions, 5, S2108–S2111.  
 
Browner, C. 1996. Watershed Approach Framework. United States Environmental Protection Agency 
(USEPA) Website. Accessed from: http://water.epa.gov/type/watersheds/framework.cfm March 
2011. 
 
Crichton, N. Wilcoxon Signed Rank Test. 2003. Journal of Clinical Nursing. 9: 584. 
 
Fotheringham, A. S. 1997. Trends in quantitative methods I: Stressing the local. Progress in Human 
Geography. 21: 88-96. 
 
ESRI (Environmental Systems Research Institute). 2010. ArcGIS, version 10.0. (ESRI), Redlands, 
CA. 
 
Garcia, V.C. 2004. Using GIS and LIDAR to map headwaters stream networks in the piedmont 
ecoregion of North Carolina. M.S. Thesis: Forestry Department, North Carolina State University. 
 
Gregory, K.J. 1977. Stream network volume: an index of channel morphometry. The Geological Society 
of America Bulletin. 88(8): 1075-1080. 

http://water.epa.gov/type/watersheds/framework.cfm


www.manaraa.com

  

67 
 

 
Gyasi-Agyei, Y., G. Willgoose, and F.P. DeTroch. 1995. Effects of vertical resolution and map scale 
of digital elevation models on geomorphological parameters used in hydrology. Hydrological Processes. 
9(3-4): 363-382. 
 
Homer, C. C. Huang, L. Yang, B. Wylie and M. Coan. 2004. Development of a 2001 National 
Landcover Database for the United States. Photogrammetric Engineering and Remote Sensing. 70(7): 829-
840.  
 
Horn, C.R. and Hanson, S.A. 1994. History of the U.S. EPA’s River Reach File: A National Hydrographic 
Database Available for ARC/INFO Applications. United States Environmental Protection Agency, 
Office of Water, Office of Wetlands, Oceans, and Watersheds, Washington, DC. 
 
Horton, R.E. 1945. Erosional development of streams and their drainage basins; hydrophysical 
approach to quantitative morphology. Bulletin of the Geological Society of America. 56: 275-330.  
 
James, L.A., D.G. Watson, and W.F. Hansen. 2007. Using LiDAR data to map gullies and headwater 
streams under forest canopy: South Carolina, USA. Catena. 71: 132-144. 
 
James, L.A., Hunt, K.J. 2010. The LiDAR-side of headwater streams mapping channel networks 
with high-resolution topographic data. Southeastern Geographer. 50(4): 523-539. 
 
Jenson, S.K. 1991. Applications of hydrologic information automatically extracted from digital 
elevation models. Hydrological Processes. 5(1): 31-44. 
 
Li J., and D. Wong. 2009. Effects of DEM sources on hydrologic applications. Computers, 
Environment and Urban Systems. 34: 251-261.  
 
Ifabiyi, I.P., 2004. The response of runoff and its components to basin parameters in the upper 
Kaduna catchment of Nigeria. Ph.D. Thesis, University of Ilorin, pp: 328. 
 
Jimoh-Iroye, H.I., and K.A. Iroye. 2010. Managing high runoff discharge in the urbanized basins of 
Asa River Catchment Area of Ilorin, Nigeria. Canadian Social Science. 6(14): 210-233. 
 
McKay, C. Linking Data to the NHD/NHDPlus. 2008. PowerPoint presentation, NHDPlus 
Workshop. February. Accessed from: http://www.horizon-
systems.com/nhdplus/documentation.php February, 2011. 
 
Merz, R. and Bloschl, G. 2008. Flood frequency hydrology: 1. Temporal, spatial, and causal 
expansion of information, Water Resources Research. 44(8): 1-17. 
 
Moore, K., K. Jones, and J. Dambacher. 2002. Methods for Stream Habitat Surveys Aquatic Inventories 
Project (Version 12.1). Natural Production Program, Oregon Department of Fish and Wildlife, 
Corvallis, OR, 97333. 
 
Morisawa, M.E. 1962. Quantitative geomorphology of some watersheds in the Appalachian Plateau. 
The Geological Society of America Bulletin. 73(9): 1025-1046. Accessed from: 
http://bulletin.geoscienceworld.org/cgi/content/abstract/73/9/1025 March, 2011. 

http://www.mrlc.gov/pdf/July_PERS.pdf
http://www.mrlc.gov/pdf/July_PERS.pdf
http://www.horizon-systems.com/nhdplus/documentation.php
http://www.horizon-systems.com/nhdplus/documentation.php
http://bulletin.geoscienceworld.org/cgi/content/abstract/73/9/1025


www.manaraa.com

  

68 
 

 
NAS (National Academy of Sciences). 2009. Drinking Water Basics. Provided by: The National 
Academies’ Water Information Center. Accessed from: 
http://water.nationalacademies.org/basics_part_5.shtml  March, 2012.  
 
NASA (National Aeronautics and Space Administration). Shuttle Radar Topography Mission: The 
mission to map the world. Accessed from: http://www2.jpl.nasa.gov/srtm/ March, 2011. 
 
NC DWQ (North Carolina Department of Water Quality). 2010. NC DWQ Tar-Pamlico River 
Basin Plan: Pamlico River Subbasin: HUC 03020104. 
 
NRC (National Research Council). 1997. Chapter 2: “Watershed research for water management”. 
Watershed Research in the US Geological Survey. National Academy Press. 
 
NOAA (National Oceanic and Atmospheric Administration). 2009. Remote Sensing is the science of 
obtaining information about objects or areas from a distance, typically from aircraft or satellites. National Ocean 
Service. Accessed from: http://oceanservice.noaa.gov/facts/remotesensing.html March 2011. 
 
Ogunkoya, O.O. J.O. Adejuwon, L.K. Jeje. 1984. Runoff response to basin parameters in 
Southwestern Nigeria. Journal of Hydrology. 72: 67-84.  
  
Pallard, B., A. Castellarin, and A. Montanari. 2009. A look at the links between drainage density and 
flood statistics. Hydrology and Earth System Sciences. 13(7): 1019-1029.  
 
Papasaika, H., and E. Baltsavias. 2009.  Investigations on the Relation of Geomorphological 
Parameters to DEM Accuracy. Paper from the EU FP6 PEGASE project, Institute of Geodesy and 
Photogrammetry, Zurich, Switzerland. 
 
Physiographic Influences. The Travels of William Bartram, The Official Site of the Bartram Trail Conference, 
INC. Accessed from: http://www.bartramtrail.org/pages/Bartram_Trail/phys.html  March, 2011. 
 
Pike, R., I. Evans and T. Hengl. 2009. Chapter 1 Geomorphometry: A brief guide, from book: 
Geomorphometry - Concepts, Software, Applications. Developments in Soil Science. 33: 3-30.  
 
Pitlick, J. 1994. Relation between peak flows, precipitation, and physiography for five mountainous 
regions in the western USA. Journal of Hydrology. 158(3-4): 219-240. 
 
Preston, S.D., R.A. Smith, G.E. Schwarz, R.B. Alexander, J.W. Brakebill. 1998. Spatially referenced 
regression modeling of nutrient loading in the Chesapeake Bay Watershed. United States Geological 
Survey. Accessed from: http://water.usgs.gov/nawqa/sparrow/chesbay/ches.html February, 2011.  
 
SCONC (State Climate Office of North Carolina). Climate-Topographic Features. Accessed from: 
http://www.nc-climate.ncsu.edu/climate/ncclimate.html#topo  March 2012. 
 
Shreve, R. L. 1966: Statistical law of stream numbers. Journal of Geology. 74: 17-37. 
 
Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos, Transactions, American 
Geophysical Union. 38(6): 913-920. 

http://water.nationalacademies.org/basics_part_5.shtml
http://www2.jpl.nasa.gov/srtm/
http://oceanservice.noaa.gov/facts/remotesensing.html
http://www.bartramtrail.org/pages/Bartram_Trail/phys.html
http://water.usgs.gov/nawqa/sparrow/chesbay/ches.html
http://www.nc-climate.ncsu.edu/climate/ncclimate.html#topo


www.manaraa.com

  

69 
 

  
Terrapoint. 2008. A white paper on LIDAR mapping. Ambercore Software. 
 
Thompson, J.A., J.C. Bell, and C.A. Butler. 2001. Digital elevation model resolution: effects on 
terrain attribute calculation and quantitative soil-landscape modeling. Geoderma. 100(1-2): 67-89. 
 
TLC (Triangle Land Conservancy). Protecting our Land for Future Generations: Annual Report: 2010-2011.  
Accessed from: http://www.triangleland.org/assets/images/uploads/TLCannualreport2011.pdf 
October 2011. 
 
USEPA (United States Environmental Protection Agency). 2009. The Geography of Waters. Accessed 
from: http://www.epa.gov/waters/about/geography.html October 2011. 
 
USEPA (United States Environmental Protection Agency). 2012a. 5.1 Stream Flow: What is stream flow 
and why is it important?. Accessed from: http://water.epa.gov/type/rsl/monitoring/vms51.cfm  
March 2012. 
 
USEPA (United States Environmental Protection Agency). 2012b. What is a Watershed?. Accessed 
from: http://water.epa.gov/type/watersheds/whatis.cfm March 2012. 
 
USEPA (United States Environmental Protection Agency) and USGS (United States Geological 
Survey). 2010. NHDPlus User Guide. Accessed from: 
ftp://ftp.horizon-systems.com/NHDPlus/documentation/NHDPLUS_UserGuide.pdf January 
2010 January, 2011. 
 
USGS (United States Geological Survey). 1998. National Mapping Program Technical Instructions; Part 1: 
General; Standards for Digital Line Graphs. Accessed from: 
http://rmmcweb.cr.usgs.gov/nmpstds/acrodocs/dlg-3/ February, 2011. 
 
USGS (United States Geological Survey). 2003. A Tapestry of Time and Terrain: The Union of Two 
Maps – Geology and Topography. Accessed from: http://tapestry.usgs.gov/physiogr/physio.html 
March, 2011. 
 
USGS (United States Geological Survey). 2010. Seamless Data Warehouse. Accessed from: 
http://seamless.usgs.gov/ January, 2011.  
 
USGS (United States Geological Survey). 2011. Shuttle Radar Topography Mission (SRTM) - “Finished.” 
Earth Resources Observation and Science (EROS) Center. Accessed from: 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/SRTM February, 2011.  
 
Woodyer, K.D. 1968. Bankfull frequency in rivers: Journal of Hydrology. 6: 114-142. 
 
Zhao, Z., G. Benoy, T.L. Chow, H.W. Reese, J. Daigle, F. Meng. 2009. Impacts of accuracy and 
resolution of conventional and LiDAR based DEMs on parameters used in hydrologic modeling. 
Water Resources Management. 24: 1363-1380.  
 

http://www.triangleland.org/assets/images/uploads/TLCannualreport2011.pdf
http://www.epa.gov/waters/about/geography.html
http://water.epa.gov/type/watersheds/whatis.cfm
ftp://ftp.horizon-systems.com/NHDPlus/documentation/NHDPLUS_UserGuide.pdf January 2010
ftp://ftp.horizon-systems.com/NHDPlus/documentation/NHDPLUS_UserGuide.pdf January 2010
http://rmmcweb.cr.usgs.gov/nmpstds/acrodocs/dlg-3/
http://tapestry.usgs.gov/physiogr/physio.html
http://seamless.usgs.gov/
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/SRTM


www.manaraa.com

  

70 
 

Appendix  

Summary Tables 

Table A.1. Summary Statistics of LIDAR-derived and NHDPlus Reach-Level Stream 
Network Characteristics 

 

Statistic 

  UFB    ROC    PAM 

 

LIDAR-
derived 

NHDPlus 
 

LIDAR-
derived 

NHDPlus 
 

NED NHDPlus 

N 
 

3,595 2,370 
 

3,943 1,247 
 

1,647 1,752 

Sum 
 

3,809,029.87 3,848,891.07 
 

3,733,514.72 2,496,402.99 
 

2,620,108.00 2,558,465.00 

Range 
 

9,246.78 14,194.18 
 

8,232.29 13,197.66 
 

22,673.00 12,634.00 

Skewness 
 

1.76 1.36 
 

1.91 2.08 
 

3.97 1.62 

Kurtosis 
 

6.22 4.95 
 

6.22 5.55 
 

31.35 4.27 

Minimum   3.55 0.03   3.57 2.66   5 1 

Q25 
 

442.14 541.72 
 

382.33 737.17 
 

533 438.5 

Median 
 

872.23 1,517.69 
 

756.12 1,477.34 
 

1,134.00 1,075.00 

Mean 
 

1,059.54 1,624.00 
 

946.87 2,001.93 
 

1,590.84 1,460.31 

Q75 
 

1,458.19 2,306.75 
 

1,273.24 2,567.18 
 

2,145.00 2,051.00 

Maximum   9,250.32 14,194.21   8,235.87 13,200.31   22,678.00 12,635.00 
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Table A.2. Summary Statistics of LIDAR-derived and NHDPlus Catchment-Level Stream Network Characteristics: Upper 
French Broad Watershed 

 

Statistic 
LIDAR_L 

(m) 
NHDPlus_L 

(m) 
LIDAR_D 

(m/ha) 
NHDPlus_D 

(m/ha) 
LIDAR_F 
(N reaches) 

NHDPlus_F 
(N reaches) 

LIDAR_∆ ̅ 
(m) 

NHDPlus_∆ ̅ 
(m) 

Sum 3,809,029.87 3,843,085.81 40,413.14 52,196.57 6,621.00 4,901.00 1,459,322.69 2,546,845.21 

Range 19,466.91 14,183.16 504.56 772.77 21.00 6.00 5,671.85 14,185.44 

Skewness 2.36 1.39 7.86 7.04 1.61 0.78 2.36 2.07 

Kurtosis 11.48 5.23 74.79 59.33 5.34 -0.04 8.80 9.97 

Minimum 0.00 11.05 0.00 0.33 0.00 1.00 0.00 6.16 

Q25 571.45 613.52 7.45 8.43 1.00 1.00 246.30 266.72 

Median 1,295.43 1,567.59 9.99 11.59 3.00 2.00 501.35 745.15 

Mean 1,667.70 1,682.61 17.69 22.85 2.90 2.15 638.93 1,115.08 

Q75 2,285.99 2,351.69 15.77 17.19 4.00 3.00 834.34 1,695.30 

Maximum 19,466.91 14,194.21 504.56 773.10 21.00 7.00 5,671.85 14,191.60 

N = 2,284 
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Table A.3. Summary Statistics of LIDAR-derived and NHDPlus Catchment-Level Stream Network Characteristics: Rocky 
Watershed 

 

Statistic 
LIDAR_L 

(m) 
NHDPlus_L 

(m) 
LIDAR_D 

(m/ha) 
NHDPlus_D 

(m/ha) 
LIDAR_F 
(N reaches) 

NHDPlus_F 
(N reaches) 

LIDAR_∆ ̅  
(m) 

NHDPlus_∆ ̅  
(m) 

Sum 2,493,487.36 3,733,514.72 16,797.24 22,820.26 5,596.00 2,627.00 755,165.82 1,526,692.03 

Range 13,200.31 39,311.11 378.01 645.57 49.00 5.00 5,212.90 12,536.04 

Skewness 2.07 2.99 10.65 7.43 2.88 0.72 2.24 3.00 

Kurtosis 5.53 12.96 156.98 63.45 13.25 -0.10 10.28 12.28 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Q25 735.97 534.70 7.31 6.28 1.00 1.00 274.61 335.77 

Median 1,477.63 1,428.36 10.11 9.07 3.00 2.00 530.21 781.88 

Mean 2,001.19 2,996.40 13.48 18.31 4.49 2.11 606.07 1,225.27 

Q75 2,567.23 3,711.17 13.39 14.71 6.00 3.00 819.09 1,528.46 

Maximum 13,200.31 39,311.11 378.01 645.57 49.00 5.00 5,212.90 12,536.04 

N = 1,246 
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Table A.4. Summary Statistics of LIDAR-derived and NHDPlus Catchment-Level Stream Network Characteristics: Pamlico 
Watershed 

 

Statistic 
LIDAR_L 

(m) 
NHDPlus_L 

(m) 
LIDAR_D 

(m/ha) 
NHDPlus_D 

(m/ha) 
LIDAR_F 
(N reaches) 

NHDPlus_F 
(N reaches) 

LIDAR_∆ ̅  
(m) 

NHDPlus_∆ ̅  
(m) 

Sum 2,620,117.11 1,463,159.42 17,118.75 25,010.56 2,917.00 3,256.00 652,648.48 848,124.59 

Range 126,328.76 7,632.08 499.38 740.41 78.00 101.00 4,383.27 6,556.70 

Skewness 11.10 1.32 7.31 5.93 7.91 10.13 1.62 2.00 

Kurtosis 166.48 2.04 68.17 41.01 94.05 142.26 3.49 5.36 

Minimum 0.00 9.55 0.00 0.08 0.00 1.00 0.00 2.68 

Q25 224.63 463.36 4.23 6.34 1.00 1.00 144.18 188.33 

Median 982.97 1,188.29 9.22 10.49 2.00 2.00 482.32 582.03 

Q75 2,605.67 2,136.76 15.72 18.34 3.00 3.00 953.78 1,198.54 

Mean 2,660.02 1,485.44 17.38 25.39 2.96 3.31 662.59 861.04 

Maximum 126,328.76 7,641.63 499.38 740.49 78.00 102.00 4,383.27 6,559.38 

N =985 
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Table A.5. Summary Statistics for Spatial Discrepancy Variables 

 
Upper French Broad Watershed 

Statistic 
∆L 
(m) 

∆D 
(m/ha) 

∆F 
(N reaches) 

∆ ̅ 

(m) 

Range 7,492.65 1,025.72 25.00 15,847.13 

Std. Deviation 747.05 41.84 2.27 963.88 

Variance 558,078.65 1,750.35 5.18 929,064.75 

Skewness 1.41 -9.20 1.18 -2.33 

Kurtosis 6.55 119.10 4.27 16.64 

Minimum -2,172.57 -773.10 -5.00 -13,264.60 

Q25 -460.56 -3.88 -1.00 -800.35 

Mean -14.91 -5.16 0.75 -476.15 

Median 8.53 0.17 0.00 -168.04 

Q75 227.01 2.40 2.00 43.25 

Maximum 5,320.08 252.62 20.00 2,582.52 

N = 2,284 
    

 

 
 
 
 
 
 
 

Rocky Watershed 

Statistic 
∆L 
(m) 

∆D 
(m/ha) 

∆F 
(N reaches) 

∆ ̅  

(m) 

Range 30,055.98 634.07 51.00 14,316.91 

Std. Deviation 2,466.92 40.36 5.05 1,349.63 

Variance 6,085,682.10 1,628.90 25.48 1,821,500.97 

Skewness 3.84 -7.97 2.87 -3.23 

Kurtosis 23.27 73.25 13.20 14.81 

Minimum -1,938.63 -558.64 -5.00 -11,326.22 

Q25 -149.15 -3.19 -1.00 -801.91 

Median 125.99 1.50 1.00 -219.14 

Mean 995.21 -4.83 2.38 -619.20 

Q75 1,255.40 4.16 4.00 20.25 

Maximum 28,117.35 75.43 46.00 2,990.70 

N = 1,246 
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Table A.5. Continued. 

 
Pamlico Watershed 

Statistic 
∆L 
(m) 

∆D 
(m/ha) 

∆F 
(N reaches) 

∆ ̅ 

(m) 

Range 129,868.97 1,034.10 61.00 8,670.73 

Std. Deviation 6,899.67 59.51 3.61 851.57 

Variance 47,605,448.01 3,541.72 13.00 725,174.19 

Skewness 12.14 -6.25 -1.58 -1.33 

Kurtosis 190.31 55.41 24.49 5.16 

Minimum -4,437.83 -740.49 -41.00 -5,138.54 

Q25 -382.98 -7.06 -2.00 -459.47 

Median 80.81 1.17 -1.00 -30.18 

Mean 1,174.58 -8.01 -0.34 -198.45 

Q75 753.46 5.70 1.00 198.28 

Maximum 125,431.15 293.61 20.00 3,532.20 

N =985 
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Table A.6. Nonparametric Correlations of Landscape Characteristics and Catchment Areas 
 

Landscape 
Variable 

 
UFB 

 
ROC 

 
PAM 

 Correlation and 
Significance 

 
Catchment 
Area (ha)  

Catchment 
Area (ha)  

Catchment 
Area (ha)  

Canopy 
 .256**  .038  .265**  Rho 

 .000  .810  .000  Sig. (2-tailed) 

Slope  
.377**  .037  -.010 

 
Rho 

 
.000  .188  .757 

 
Sig. (2-tailed) 

Developed 
 .058**  .058**  .058** 

 
Rho 

 .005  .005  .005 
 

Sig. (2-tailed) 

Forest 
 .203**  .203**  .203** 

 
Rho 

 .000  .000  .000 
 

Sig. (2-tailed) 

Agriculture 
 .007  .007  .007 

 
Rho 

 .734  .734  .734 
 

Sig. (2-tailed) 

Water 
 -.057**  -.057**  -.057** 

 
Rho 

 .007  .007  .007 
 

Sig. (2-tailed) 

Aspect_N  
-.050*  -.101**  -.029 

 
Rho 

 
.017  .000  .369 

 
Sig. (2-tailed) 

Aspect_NE  
-.038  -.078**  .179** 

 
Rho 

 
.067  .006  .000 

 
Sig. (2-tailed) 

Aspect_E  
.004  .099**  .000 

 
Rho 

 
.853  .000  .989 

 
Sig. (2-tailed) 

Aspect_SE  
.046*  .082**  -.058 

 
Rho 

 
.029  .004  .070 

 
Sig. (2-tailed) 

Aspect_S  
-.068**  -.129**  -.061 

 
Rho 

 
.001  .000  .055 

 
Sig. (2-tailed) 

Aspect_SW  
.010  -.066*  .143** 

 
Rho 

 
.636  .020  .000 

 
Sig. (2-tailed) 

Aspect_W  
.047*  .033  -.093** 

 
Rho 

 
.023  .238  .003 

 
Sig. (2-tailed) 

Aspect_NW  
.011  .033  -.127** 

 
Rho 

 
.594  .243  .000 

 
Sig. (2-tailed) 

 
Note: Landscape metrics are defined in Section “”. Significant results are boldfaced. **Significant at 95 

percent confidence. *Significant at 90 percent confidence. 
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